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Arctic climate change Y,
Impacts on weather and climate in mid-latitudes A

» Arctic climate change

» Planetary-scale atmospheric circulation
» Observed Arctic-midlatitude linkages
» Mechanisms of linkages

» Representation in climate models



The Arctic within the global climate system AN/
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Current situation in the Arctic —
Seaice minimum
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seaiceportal.de

Sea Ice Concentration
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Extent:
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B median ice edge 1981-2010

Mational Snow and Ice Data Center, University of Colorado Boulder

» Sea-ice retreat over
the Beaufort, East
Siberian, Laptev, Kara
and northern Barents
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Current situation in the Arctic —

Seaice minimum

QI

Meereis-Ausdehnung Arktis (Meereiskonzentration >15%)

17.09.2017: 4.79 Mio km?
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Arctic Amplification and ,
Retreat of Arctic Sea lce

8

Retreat of Arctic Sea Ice
Extent in September,
1979-2017 6
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1980 1985 1980 1985 2000 2005 2010 2015
Annual D-N 2007-2016 L-OTI(°C) Anomaly vs 1951-1980 0.69

Arctic Amplification

Anomalies of Surface Air
Temperature 2007-2016 from

Mean over 1951-1980

Goddard Institute for Space Studies, 2014
http://data.giss.nasa.gov/gistemp/
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Arctic Amplification @*A/V/

Surface Air Temperature (NASA GISS) Vertical & seasonal structure of
Annual zonal mean anomalies 1880-2016 Arctic-mean temperature trends
relative to 1951-1980 ERA-I reanalyses 1979-2008
a0 12-month zonal mean anomalies vs 1951-1980 .
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Screen et al., GRL, 2012

» Amplification is greatest in autumn and winter

» Amplification is greatest near the surface p
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Arctic amplification —

Possible Feedback Explanations eV

Ice/Snow Albedo-Temperature Feedback
No direct influence in the Arctic winter
Water Vapour Feedback

No winter trend in precipitable water

Cloud Feedback

Open question

Dynamical Feedback

Changes in meridional energy transport

y - Amplification is
*"greatest in autumn/
i winter near surface

Thinning Sea Ice Feedback | Frope et s
Enhanced heat flux from ocean through sea ice
Lapse-rate feedback >
Stronger warming at the surface than in the

middle and upper troposphere

- Positive lapse rate feedback in the Arctic

Surface

Pithan & Mauritsen, JC, 2013



Atmospheric circulation in the mid-latitudes — AN 7
Jet streams-Planetary Waves-Circulation patterns

Polar jet stream at ca. 10 km height
Two states of atmospheric circulation

Zonal jet stream Meandering jet stream
Small-amplitude planetary waves Large-amplitude planetary waves

MERRA data, Jan. 2012, NASA

ﬁ HELMHOLTZ
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Atmospheric circulation in the mid-latitudes —
Jet streams-Planetary Waves-Circulation patterns

Two states of atmospheric circulation
over the North Atlantic-European sector

ANV

Zonal jet - Polar Vortex @ Meandering jet
stream i’ - : stream
Sma| |_ Jet Stream / Large_

amplitude elandic amplitude

planetary planetary
waves Azores 2ot waves

High
High 2

Corresponding patterns of sea-level pressure anomalies
(deviation from mean pressure distribution)

6
North-Atlantic »  North-Atlantic
Oscillation in ? Oscillation in
positive phase -1 hegative phase
(NAO+) 2 (NAO-)




Atmospheric circulation in the mid-latitudes —
Jet streams-Planetary Waves-Circulation patterns

Two states of atmospheric circulation
over the North Atlantic-European sector

ANV

Zonal jet Polar Vortex Q Meandering jet
stream stream
Small- Jet Stream / L arge-
amplitude - Icelandic amplitude
planetary planetary
waves Azores s waves

High

High

» Can Arctic changes contribute to changes in the frequency of
occurrence of circulation states (NAO-phases)??

North-Atlantic North-Atlantic

—_- N W e

Oscillation in Oscillation in
positive phase -1 hegative phase
(NAO+) 2 (NAO-)




Arctic Sea Ice and atmospheric

. | . SN,
Circulation changes — Some History /
Analysis of observational data Wilhelm Brennecke (1875-1924), Oceanographer,
» Brennecke (1904) Meinardus (1906) 2nd German Antarctic Expedition 1911/12

local synoptic situation < Position of ice edge

Wilhelm Meinardus (1867-1954), Geographer,
Nestor of German Polar Research



Arctic Sea lce and atmospheric S AN
Circulation changes — Some History /

Analysis of observational data
» Brennecke (1904), Meinardus (1906)
local synoptic situation < Position of ice edge
Hugo Hildebrand Hildebrandsson (1838-1925)
» Hildebrandsson (1914) Meteorologist, Discoverer of Southern Oscillation
Hypothesis: Mean winter conditions over Europe
depend on the summer Sea Ice extent in

the Greenland Sea
Wiladimir Juljewitsch Wiese (1886-1954)

Oceanographer, Geographer,
Meteorologist and Polar researcher

» Wiese (1924)
Relationships between:
(1) Air pressure distribution and Barents Sea ice extent (Sea ice prediction)

(2) Sea ice extent in East-Greenland-/Norwegian Sea and air pressure distribution
(incl. Storm frequency/cyclone tracks over the North Atlantic)



Arctic Sea lce and atmospheric

Circulation changes — Some History
Analysis of observational data ' *

i 3

» Wiese (1924)
Relationships between:

——

. : =
(2) Sea ice extent in East-
Greenland-/Norwegian Sea Fig. 10, Mittlere Ilahnen nordatlantischer Zyklonen
and air pressure distribution im Herbst.
(inC| Storm fre uenc /C C|One Schwere ].-lisv_erhiilm}sse 111! Granliindischen Meere
. q yicy Leiche 1 lmhAPul—J“h.(‘ X :
- o . Leichte Fisverhiiltnisse im Gronlindi Y|
tracks over the North Atlantic) e Al adiehien Heere

Mean cyclone tracks in autumn for
Heavy ice conditions in Greenland Sea in April to July
=== |ight ice conditions in Greenland Sea in April to July




Arctic Sea lce and atmospheric S AN
Circulation changes — Some History /

Analysis of observational data
» Brennecke (1904), Meinardus (1906)
local synoptic situation < Position of ice edge

» Hildebrandsson (1914)
Hypothesis: Mean winter conditions over Europe
depend on the summer Sea Ice extent in
the Greenland See

» Wiese (1924)
Relationships between:
(1) Air pressure distribution and Barents Sea ice extent (Sea ice prediction)
(2) Sea ice extent in East-Greenland-/Norwegian Sea and air pressure distribution
(incl. Storm frequency/cyclone tracks over the North Atlantic)

First modelling studies since ca.1971
» Herman & Johnson (1978):
Model experiment with atmospheric General Circulation model: only changes in
sea ice extent (observed recent minimum and maximum ice extent)
Ensemble simulations, winter conditions
Global circulation changes (pressure, temperature, energy fluxes)



Seaiceretreat & subsequent atmospheric a
circulation changes AN

Reduced seaice in August/September
Additional heat stored in ocean

Warmer surface temperatures in following seasons

Reduced atmospheric vertical stability Synoptic-
scale
Arctic
: : | Response
A possible dynamical pathway for
Snow cover A : (Gl etk o
changes rctic-midiatituade linkages™
-
I
e |
Weaker stratospheric Polar Vortex/ Plar:etary-
Negative Nor tic Oscillation ~ scale
- w Response
Enhanced possibility of cold winters over Eurasia




Seaiceretreat & subsequent atmospheric G AN 1/
circulation changes — ERA-Interim data

>
>

>

ERA-Interim

Reanalysis data set = Model assimilated
atmospheric observations

Analyses for 1979-2014

September Sea ice concentration (%)

High seaice extent
HIGH ice (1979/80-1999/00)

Low sea ice extent
LOW ice (2000/01-2013/14)

Ice extent in 106km?

10

o

HIGH ice

LOW ice

0
1975

1983 1991 1999 2007 2015




Seaiceretreat & subsequent atmospheric G AN 1/

circulation changes — ERA-Interim data

Baroclinic response over the Arctic in autumn
low minus high ice conditions in ERA-Interim,
Area-averaged mean over the Sibirian Arctic Ocean
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Seaice retreat & subsequent atmospheric
circulation changes — ERA-Interim data

ANV

[hPa]

Druck [hPa]

Baroclinic response over the Arctic in autumn
low minus high ice conditions in ERA-Interim,
Area-averaged mean over the Sibirian Arctic Ocean
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Seaice retreat & subsequent atmospheric
circulation changes

ANV

v Reduced seaice in August/September

v" Additional heat stored in ocean

v' Warmer surface temperatures in following seasons

v' Reduced atmospheric vertical stability
S

/ v' Amplified weather systems in autumn

Snow cover
changes
\ Impact on planetary waves in winter-
O P o
Negative North Atlantic Oscillation/

Weaker stralv Polar Vortex

Enhanced possibility of cold winters over Eurasia

Synoptic-
scale
Arctic
Response

Planetary-
~ scale
Response




Polar cap temperature change — ERA-Interim data @*NV/

Temperature [K] average 65°N-85°N

Climatologies of polar cap temperature

High ice 1979/80-1999/00 Low ice 2000/01-2013/14

10- 10.

. 7w 1
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» Higher tropospheric temperatures all over the year
» Global warming impact
» Arctic amplification impact
» Strong significant warming of polar stratosphere in late winter
» Polar vortex breakdown? e




Polar cap temperature change — ERA-Interim data @*NV/

Temperature [K] average 65°N-85°N

for low minus high ice conditions in ERA-Interim
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» Higher tropospheric temperatures all over the year
» Global warming impact
» Arctic amplification impact
» Strong significant warming of polar stratosphere in late winter
» Polar vortex breakdown?-> Yes, strato. westerly winds massively reduced




Troposphere-Stratosphere coupling through

planetary waves eV

Localized Eliassen-Palm flux (EP flux, Trenberth 1986)
* Interaction between waves and mean flow
» Description of coupling between troposphere and stratosphere through waves

T = 3D EP flux vector

* Vector describes the direction of wave propagation

planetary scales

We actually use:
Planetary scale vertical component of EP flux vector

How strong do planetary waves propagate vertically (into the stratosphere)?

EEEEEEEEEEEE



Polar cap vertical wave propagation change — .
ERA-Interim data CANVI

Vertical component of Eliassen-Palm flux vector [m?/s?] average 65°N-85°N

Climatologies of polar cap vertical component EP flux vector
High ice 1979/80-1999/00 Low ice 2000/01-2013/14
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» Enhanced upward propagation of planetary waves in autumn and early winter
» Disturbing the polar vortex, leading to a vortex breakdown

» Vertical wave propagation is reduced in February due to the vortex breakdown
» Without westerly winds vertical wave propagation is not allowed



Polar cap vertical wave propagation change —
ERA-Interim data

ANV

Vertical component of Eliassen-Palm flux vector [m?/s?] average 65°N-85°N

for low mlnus hlgh Ice conditions in ERA-Interim
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» Enhanced upward propagation of planetary waves in autumn and early winter
» Disturbing the polar vortex, leading to a vortex breakdown

> Vertical wave propagation is reduced in February due to the vortex breakdown
» Without westerly winds vertical wave propagation is not allowed



Seaice retreat & subsequent atmospheric
circulation changes — ERA-Interim data

ANV

v Reduced seaice in August/September

v" Additional heat stored in ocean

v' Warmer surface temperatures in following seasons

v' Reduced atmospheric vertical stability

S
/ v' Amplified weather systems in autumn
Snhow cover
changes

v Impact on planetary waves in winter-
-
Negative North Atlantic Oscillation/

Weaker stral'Polar Vortex

Enhanced possibility of cold winters over Eurasia

Synoptic-
scale
Arctic

Response

Planetary-
— scale
Response




Seaice retreat & subsequent atmospheric

ANV

circulation Changes — ERA-Interim data

Sea ice concentration
s, September (HadISST Data)

270°
90"

| [ %0]
10 6 3 2 1 1 2 3 6 10

Sea level pressure
Following February (ERA-Interim)

180

Planetary-scale response in February
Coupled Patterns 1979-2015

» Statistical relation between sea ice
retreat and changes of atmospheric
circulation patterns

» Changes of centers
of action, similarity
with pattern of NAO
In negative phase




Seaiceretreat & subsequent atmospheric G AN 1/
circulation changes — ERA-Interim data

_ September September Planetary-scale response in Feb.
S . o e Coupled Patterns 1979-2015
= ' ' » Statistical relation between
§ sea ice retreat and changes of
9 atmospheric circulation patterns
b)
O
© .
k? » Changes of centers of action,
— similarity with pattern of NAQ
e In negative phase
c 180°
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3 » Associated changes in
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February Winter
Sea level pressure GPH 50nPa Jaiser et al. 2012, 2013, 2016
36% explained Covariance 63% expl. Covariance Handorf et al. 2015




Seaiceretreat & subsequent atmospheric oA/ 1/
circulation changes — ERA-Interim data

Preferred large-scale patterns (circulation regimes)
over North-Atlantic-Eurasian region

Cluster analysis of daily SLP fields
ERA-Interim 1979-2015, DJFM

SLP anomalies of the five preferred large-scale patterns
NAO+ SCAN/SIB Blocking ATL-

| — — ] | — — [ |
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Crasemann et al., (2017) Polar science



Seaiceretreat & subsequent atmospheric G AN 1/
circulation changes — ERA-Interim data

Frequency of occurrence of preferred large-scale patterns
over North-Atlantic-Eurasian region

Relative frequency of occurrence Patterns with significant more
for high ice conditions (blue bars) & frequent occurrence for
for low ice conditions (red bars) low ice conditions

%7 [ > December and January

More frequent occurrence of
SCAN/SIB Blocking
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Seaiceretreat & subsequent atmospheric G AN 1/
circulation changes — ERA-Interim data

Frequency of occurrence of preferred large-scale patterns
over North-Atlantic-Eurasian region

Associated patterns of Patterns with significant more
anomalies of 2m- frequent occurrence for
temperature low ice conditions

» December and January
More frequent occurrence of
SCAN/SIB Blocking

[ — — ]
20-10-5 3 2 11 2 3 5 10 20
[hPa]

» February and March
More frequent occurrence of
NAO- 3
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Seaiceretreat & subsequent atmospheric G AN 1/
circulation changes — ERA-Interim data

_ September September Planetary-scale response in Feb.
S P S o e Coupled Patterns 1979-2015
= » Statistical relation between
§ sea ice retreat and changes of
9 atmospheric circulation patterns
3 » Changes of centers of action,
S similarity with pattern of NAO
v _ . _ in negative phase
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" H » Observed changes in troposphere
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Sea level pressure GPH 50hPa Handorf et al. 2015
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Representation of sea ice impacts Y.y,
In climate models /

» Model: AFES (Atmospheric general circulation model For Earth Simulator)
» 2 model simulations, with 60 perpendicular years each
» CNTL: High ice conditions as observed from 1979 to 1983
» NICE: Low ice conditions as observed from 2005 to 2009
» Only seaice is different between both runs
» Improved representation of heat fluxes through sea ice
» Nakamura et al. (2015, JGR); Jaiser et al. (2016)

Maps of sea ice concentration in fall (SON) for low minus high ice conditions

AFES ERA-Interim
NICE-CNTL : ; LOW-HIGH ;




Polar cap vertical wave propagation change — WL\Y\Y/]

Climate model & ERA-Interim data
Polar cap mean 65°N-85°N of vertical EP flux component [m?/s?] on planetary scales

for low minus high ice conditions - °
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Polar cap temperature change —

Climate model & ERA-Interim data

ANV

Polar cap mean 65°N-85°N of Temperature [K] for low minus high ice conditions

» Very good agreement between
model and reanalysis in winter
(and autumn)

» ERA-Interim shows a general
global warming signal

» AFES surface warming related
to sea ice alone

» Atmospheric models with well
implemented sea ice forcing are
able to reproduce the observed
negative NAO Signal in (late)
winter and the related
dynamical processes

MODEL AFES NICE-CNTL ERA-Interim LOW-HIGH
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Seaiceretreat & changes in atmospheric circulatior@*g Y,
regimes — Climate model & ERA-Interim data

Preferred large-scale patterns over North-Atlantic-Eurasian region

Relative frequency of occurrence Patterns with significant more
for high ice conditions (blue bars) & frequent occurrence for
for low ice conditions (red bars) low ice conditions
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September-Mittel der Meereisausdehnung in der Arktis von 1979-2015

Dynamical linkages between .
the Arctic and the mid-latitudes ’

PN == (L umvvarsinss nrs
1985 1990 1995 2000 2005 2m0 2015

- \ Sea Ice Loss
: = N >

In summer and early fall
"“‘g > In late fall and winter
Snow Cover

I Polar Vortex
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Changesin
» Synoptic cyclones
» Jets

> Planetary waves

Synoptic- planetary interactions
Diabatic wave forcing
Decreased temp gradient
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Outlook WL\Y\Y/]

Seaice change is a fundamental driver of atmospheric circulation anomalies

» Atmospheric models with well implemented sea ice forcing and more realistic
surface fluxes are able to reproduce the observed negative (N)AO Signal in
(late) winter and the related dynamical processes

» Sea ice forcing changes the occurrence of preferred circulation states of the
chaotic atmosphere

» Dependence of the signal on the regional pattern of sea ice changes has to be
analysed

» Changes in other forcing factors have to be studied, e.g.
—> Changes in snow cover or sea surface temperatures
- Changes in natural varibility patterns (e.g. ENSO)

» Detailed studies of linkages and underlying mechanisms in other seasons are still
to be done
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Conclusions for the modelling of the impact of Arctic climate changes on the
weather and climate in mid-latitudes

» Fundamental dynamic processes in the atmosphere have to be well represented,
In particular wave forcing and wave propagation

» Adequate implementation of surface forcing is essential
—> important for coupled atmosphere-ocean-sea-ice models

» Potential for improved predictions on seasonal to decadal time scales and
subsequent climate impact studies

ﬁ HELMHOLTZ
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