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In a nonlinear system the growth of initial uncertainty is flow dependent.
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The set of initial conditions (black circle) is located in different regions of the attractor in

a), b) and c) and leads to different error growth and predictability in each case.




Chaos and ensemble forecasting

: : : Good predictabilit
The climate is a chaotic system where the future pred d

30

state of the system can be very sensitive to small 20
differences in the current (initial) state of the system. 241
In practice, the initial state of the system is always e
uncertain. o)

124
10
a

Our forecast models are not perfect in all aspects I :orecilsttiéme 2 T
(e.g. small-scale features such as clouds).

Poor predictability

Ensemble forecasting takes into account these
iInherent uncertainties by running a large number of
similar but not identical versions of the model in
parallel. The resulting forecasts are expressed in
probabilities.
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El Nino Southern Oscillation — a coupled atmosphere-ocean mode of variability
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El Nino Southern Oscillation — a source of predictability on seasonal timescales

El Nifio Weather Patierns December - February




Forecast models for seasonal predictions

Observations Data Coupled Forecast
Assimilation model - Products
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Forecasting probability distributions

Seasonal forecasts aim to predict an anomaly from the default climatological probability.

Probability density distributions of a hypothetical
climatology and forecast given an observation.

“Ideal” situation /\ “Real” situation




Climate forecasts are not crucially sensitive to the initial
conditions. They are a mixed Initial-boundary condition (forcing)
problem In a chaotic system.

Weather Seasonal
Forecasts Outlooks
w Climate Projections
Initial Condition Problem Boundary Condition Problem

Days Months Years Decades Centuries




The North Atlantic Oscillation (NAO)

REOF (10.2%) shown as
regression map ef 500mb height (m)

- = Dominant mode of variability on a range of time scales over the North
s Atlantic-European region

= Typically defined as the 15t EOF of MSLP or 2500

* NAO index: 18t Principal Component or sometimes (mostly for historical
reasons) as normalised MSLP difference between Iceland and the
Azores

NAQ Index

(b) Negative phase




— Seasonal forecasts of the winter NAO

S_CiEl}CE A_‘pr'l 2014 | Ensemble hindcasts of the NAO index 1993-2012

News | Opinion | Business Monev | Sport | Life  Arts | Puzzles | Papers | Irish news Wlth the Met Oﬁlce mOdeI (GloSea GAB)
Welcome to your preview of The Times .
winter NAD Ensemble Predictions
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Sources of predictability

b ENSO (forecost) € __ ENSO (obs, 1960-2010)
e = m' , ; o
ENSO 4 r=0.83
Atlantic sub-polar gyre r=0.14
oceanic heat content
Kara Sea ice r=0.44
QBO r=0.45

Scaife et al. (GRL 2014)

GloSea5 MSLP obs




Seasonal forecasts of the weather and climate over Euro-Atlantic region
are difficult due to

» |ow signal-to-noise ratios in predictability of extratropical atmosphere

= teleconnections from tropical forcings are less direct, and perhaps more manifold, than for other
areas in the world

= sample sizes are intrinsically small (mainly limited by number of observed seasons, usually 0(30))

Estimates of seasonal predictability, skill and reliability suffer from rather large uncertainties.




lllustrative example of correlation drawbacks after Anscombe (1973):
» Four pairs of x-y variables
= The four y variables have the same mean (=7.5), variance (=4.1) and correlation (=0.82)

= However, distributions of variables are very different

Anscombe’s quartet
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Atmospheric Seasonal Forecasts of the 20t Century (ASF-20C)

A new very long data set of seasonal hindcasts to study changes in predictability

Use of ECMWF's re-analysis of the 20" Century (ERA-20C) that spans the 110-year period
1900 to 2010 to initialise atmospheric seasonal forecasts with ECMWF'’s forecast model

SSTs and sea-ice are prescribed using HadlSSTs
Seasonal re-forecast experiments over the period 1900-2010
Large ensemble of 51 perturbed members

Focus here: 4-month forecast initialised on 15t of Nov each year to cover boreal winter (DJF)
season

More details in Weisheimer et al. (QJRMS 2017) and O'Reilly et al. (GRL 2017)



Global mean 2m temperature forecast anomalies in DJF
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Weisheimer et al. (QJRMS 2017) |

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

DJF global mean 2m temperature in ERA-20C (red) and the re-forecast ensemble of ASF-20C (blue). Uncertainty estimates
from the reanalysis and the re-forecast ensemble are shown in orange (full range of the 10-member ensemble) and with
blue shades (light blue: full range; darker blue: interquartile 25%-75% range; blue dots: ensemble median), respectively.




Multi-decadal variability of NAO forecast skill

- estimates from 30-year moving windows -

NAO correlation skill
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Anomaly correlation coefficient of the DJF NAO index between the ensemble mean and ERA-20C computed for
moving 30-year windows by one year. Values are plotted at the 15th year of each window. The horizontal line
indicates the t- test 95% significance level of the correlations and the red vertical bars show 90% confidence

intervals estimated from bootstrap re-sampling (1000 times) with replacement for three representative periods.
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NAO

ROC skill score
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ROC skill scores and NAO distribution
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Multi-decadal variability of NAO forecast skill

- persistence and intraseasonal variability -
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Forecasting probability distributions

Seasonal forecasts aim to predict an anomaly from the default climatological probability.

Probability density distributions of a hypothetical
climatology and forecast given an observation.

“Ideal” situation /\ “Real” situation




Signal and noise

x,, .. variable x with member m and year n

1 N M 1 M
Mean: x = Wz z Xmn Fnsemble mean: (x,) = MZ Xmn
n m N M m

. 1 N2
Variance: VARipiq = Wz Z(xm,n — x)
n m

VARota1 = VARsignal + VARypise > S/N= MRSIgnaj/ VAR,

oise
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VAR gna1r = Nz«xn) — X)* VARnoise = Wz Z(xm,n — (xn>)
™ n o om

ensemble mean variance variance of ensemble members about
> “signal” ensemble mean (=spread) 2 “noise”



Correlation skill and signal-to-noise (S/N) ratio

The expected value for various measures of skill for seasonal climate predictions is determined by the S/N ratio.

é ol “The expected value, however, is only realized for long verification time
% 8:;: B series. In practice, the verifications for specific seasons seldom exceed a
% 05{ /o o o S o sample size of 30. The estimates of skill measure based on small

s ol /o verification time series, because of sampling errors, can have large

‘%i 21/ departures from their expected value.”
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The Ratio of Predictable Components (RPC)
QAGUPUBLICATIONS .

Do seasonal-to-decadal climate predictions
underestimate the predictability
of the real world?

Rosie Eade', Doug Smith’, Adam Scaife’, Emily Wallace', Nick Dunstone’,
Leon Hermanson', and Niall Robinson’

"Met Office Hadley Centre, Exeter, UK

Abstract seasonal-to-decadal predictions are inevitably uncertain, depending on the size of the predictable

Cops - r(obs, ens mean)
PCrodger \/VARSignal/VARtotal

RPC =

Predictable Components (PCs) ... predictable part of the total variance
observed Pc,, ... estimated from explained variance = r?(obs, ensmean)

model PC o 4ef ... estimated from ratio of signal variance to total variance

Eade et al. (GRL 2014)




Perfect model ensembles and potential skill

What is a perfect model ensemble?

» Perfect sampling of the underlying probability distribution of the true state

= Over a large number of forecasts, the statistical properties of the truth are
identical to the statistical properties of a member of the ensemble

* |.e., the truth is indistinguishable from the ensemble ®
-> Replace observation with ensemble member ®
Oo O
e @
® % o
O
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Perfect model ensembles and potential skill

Properties of a perfect model ensemble
* Time-mean ensemble spread == RMSE of ensemble mean forecast

» 1 (perfect model) = corr(ens mean,ens members) = “potential skill”

» RPC of a perfect ensemble ==

= Observed correlation < perfect model correlation ?? ¢




Perfect model ensembles and potential skill

Implications for non-perfect ensembles
* Time-mean ensemble spread # RMSE of ensemble mean forecast
ensemble spread < RMSE - ensemble is underdispersive

ensemble spread > RMSE -2 ensemble is overdispersive

= RPC # 1

RPC > 1 - underconfidence; VAR, ., too small, model underestimates predic-

tability of real world, observed correlation > perfect model correlation

RPC <1 - overconfidence; observed correlation < perfect model correlation
model predictability is larger than in real world



The signal-to-noise “conundrum” or “paradox”

Ensemble hindcasts of the AO index

RPC of DIJF MSLP in GloSeas (RPC = ——2bs 1981-2010 with the ECMWF System 4

l)Cmodel AO
DJF, scaling factor=6

r=0.61 S/N=0.1

3!
1980 1984 1988 1992 1996 2000 2004 2008 2012

033 05 057 067 077 083 091 1 11 12 13 15 175 2 3

Eade et al. (GRL 2014) Stockdale et al. (GRL 2015)

The real world seems to have higher predictability than the model.




The signal-to-noise “conundrum” or “paradox’

A Bayesian Framework for Verification and Recalibration of Ensemble Forecasts:
How Uncertain is NAO Predictability?

STEFAN SIEGERT, DAVID B. STEPHENSON, AND PHILIP G. SANSOM

University of Exeter, Exeter, United Kingdom

ADAM A. SCAIFE, ROSIE EADE, AND ALBERTO ARRIBAS
Met Office Hadley Centre, Exeter, United Kingdom

(Manuscript received 11 March 2015, in final form 30 July 2015)

ABSTRACT
Predictability estimates of ensemble prediction systems are uncertain because of limited numbers of past

posterior distributions

= 95% uncertainty intervals on r=0.62 are [0.19;0.68] - SIN,. .4
S5 Iy
= S/Ngs is larger than S/N,qel > 4- ',' \‘
—>raw forecasts should not be taken as representative g 37 ! ‘.
scenarios of the observations (not exchangeable) 27 \
1 —
—> predictable signal in model too weak - '
I I I I I
= The particular 20-yr period is unusual and produces higher-than- 0.0 05 1.0 1.5 2.0
signal to noise ratio

normal correlation skill
Siegert et al. (JClim 2016)



What is the empirical evidence on shorter forecast ranges that

1) models are overdispersive
and/or

1) model estimates of predictability are too low (underconfidence)?




Spread-skill relationship in medium-range forecasts

ECMWF model for NHem Extratropics 2500 DJF 2016/17
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courtesy David Richardson (ECMWF)




ECMWF model for NHem Extratropics 2500 RMSE ==ss=ssssr gpread
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Spread-skill relationship in monthly forecasts
Z500 projections on EOF 1 ——  ECMWF
0.2+ (NAO) during winter — gﬁiﬂip
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1St Nov start date 1981-2010 Z500 seasonal forecasts S4 51 ens members
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1St Nov start date 1981-2010 Z500 seasonal forecasts S4 51 ens members

n.hem__ Z500 System4 11 1981-2010 51 ens weeks

m— RMSE
80
====:spread
LI 0] blas
60" |
40 |
201 ]
0 LICI I WM, —
| i i M --------------- ™
1 2 3 4 5 6
Wee k 6 forecast range (week)

RMSE spread spread/RMSE

RMSE WE Z500 Systam4 17 1581-2010 51 8ns weaks anem sprand We 2500 Systema 1119812010 51 ens weeks raflo spraad AMSE We Ze00 Syetemd 11100712000 81 ans weeks anam
— - ol T 152




Correlations in medium-range forecasts (TIGGE models)

(a)CMC (2007/08-2013/14) (b)ECMWF (2006/07-2013/14) (c)JMA (2006/07—-2013/14)
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Correlations in monthly forecasts

1995/96 — 2016/17 hindcasts with 11 ensemble members
CY41R1 T255L60 atmosphere only experiments with observed SSTs
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Correlations in monthly forecasts

1995/96 — 2016/17 hindcasts with 11 ensemble members
CY41R1 T255L60 atmosphere only experiments with observed SSTs
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Correlations In week 4
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Seasonal NAO predictions in the EUROSIP models

_(d) ACC

(e) Variance ratio
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Ensemble mean RMSE
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Spread-RMSE relationship in ASF-20C
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NAO skill and RPC in ASF-20C
using 30-year moving windows across the 110-year period

NAOZ500 1900-2009
I I I

correlation
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Weisheimer et al. (QJIRMS 2017)




Contributions to covariance in ASF-20C
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Z500 anomalies for largest contributions to covariance

Anomalies for obs 2000
1976 I
10

Anomalies for ensmean
1976

courtesy Damien Decremer (ECMWF)




1St Nov start date 1981-2010 Z500 seasonal forecasts S4 51 ens members

_ _ DJF mean _ _
correlation skill perfect model correlation skill

corr ensmean S1 Z500 System4 111981-2010 51 ens seas perfectcorr S§1 Z500 Systemd4 11 1981-2010 51 ens seas

correlation skill minus perfect model correlation skill

corrdiff S1 Z500 Systemd4 11 1981-2010 51 ens seas




1st Nov start date 1981-2010 MSLP seasonal forecasts S4 51 ens members

_ _ DJF mean _ _
correlation skill perfect model correlation skill

corr ensmean S1 MSLP System4 11 1981-2010 51 ens seas perfectcorr S1 MSLP System4 11 1981-2010 51 ens seas

correlation skill minus perfect model correlation skill

corrdiff 51 MSLP System4 11 1981-2010 51 ens seas
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1st Nov start date 1981-2010 Z50 seasonal forecasts S4 51 ens members

correlation skill DJF mean perfect model correlation skill

corr ensmean S1 Z050 System4 11 1981-2010 51 ens seas perfectcorr 51 Z050 System4 11 1981-2010 51 ens seas




1981-2009

Underconfidence in seasonal forecasts?
corr(obs,ensmean) minus corr(ens,ensmean)
S4 ASF-20C SEAS 5
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Underconfidence in seasonal forecasts (ASF-20C)?

corr(obs,ensmean) minus corr(ens,ensmean)

1912-1940 1942-1970 1981-2009
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Arctic amplification?

Z500 trend 1981-2009

ASE-20C trend in

ERA-20C
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Role of the Tropics

as a major source of predictability on longer timescale?




Anomaly Correlation of the NAO in monthly forecast experiments
1995/96 — 2016/17 hindcasts with 11 ensemble members
CY41R1 T255L60 atmosphere only experiments with observed SSTs
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Anomaly Correlation of the NAO in monthly forecast experiments
1995/96 — 2016/17 hindcasts with 11 ensemble members
CY41R1 T255L60 atmosphere only experiments with observed SSTs
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Role of the Tropics in ASF-20C
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Why is RPC > 1 during decadal periods when NAO >0 ?

- Tim Palmer’s regime hypothesis




Circulation regimes over the Euro-Atlantic area
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Effect of non-linear regime error
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Summary and Conclusions (I)

Dynamical predictions of the winter NAO remain a challenge.
Distinct multi-decadal variability of the winter NAO forecast skill:
» No general evidence that model cannot predict negative NAO winters but asymmetry in predictive skill of NAO phase

» Lack of skill in mid-Century: Flow-dependent non-linear model error or lower intrinsic predictability of the
atmosphere?

Mid-Century period stands out as an important period on which to test the performance of future seasonal forecast
systems.

Achieving good forecast skill for recent decades, with predominantly positive NAO winters, is no guarantee for a
similar good performance in the future during possible periods with more negative NAO winters.



Summary and Conclusions (ll)

It has recently been suggested that predictability estimates of seasonal forecast models of the winter NAO
underestimate the real world predictability. These findings are based on multi-decadal simulations when the NAO
was predominantly in its positive phase.

Spread-RMSE diagnostics across forecast time scales give no indication of over-dispersive behaviour. Correlation
skill does indicate situations with perfect model skill > actual skill on time scales of ~14d onwards.

However, correlation measures suffer from large uncertainties due to small samples taken over specific long-term
(decadal-centennial) climate regimes.

Long seasonal hindcasts covering the full 20" Century allow to put the predictability situation of the recent decades
into a longer climate context. Over the entire period RPC~1.

Recent decades see high levels of NAO skill and atendency to underestimate the real skill. Previous climate
periods do not show indications for such a behaviour.

Preferred flow pattern of most skillful years point towards strong Z500 anomalies over Greenland and parts of the
Artic. Observed predictability is higher throughout the atmospheric column in these regions but only during
recent decades.

“Conundrum” (or paradox) is a plausible manifestation of model deficiencies in representing non-linear circulation
regimes.
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