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Original motivation: extract dominating co-variability from spatio-temporal fields of
climate observations records (dimensionality reduction)

Linear PCA:

Diagonalization of lag-zero covariance matrix C of multivariate time series (matrix X
wth standardized components)

C=X"X with C=U"SU and 3=diag(c’,.,02)

e Compute correlation matrix of all variables
* Estimate eigenvalues and eigenvectors

e Eigenvectors: additive decomposition into principal components (weighted
superpositions of original variables) with individual variances corresponding to
associated eigenvalues

—> spatial EOF patterns + index/score time series describing magnitude and sign of
individual EOF modes (characteristic for individual climate oscillations)

ok Reik V. Donner, reik.donner@pik-potsdam.de 2 \/\/



Example: leading EOF (EOF-1) of near-surface air pressure in Arctic
=> Dipole structure (Arctic Oscillation)

Leading EQF (19%) shown as
regression map of 1000mb height {m)
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Purpose: extract dominating spatio-temporal (co-)variability modes from fields of
climate observations

Linear decomposition/dimensionality reduction technique

* Potential improvement: nonlinear extensions like kernel PCA, neural network PCA,
isometric feature mapping and other nonlinear dimensionality reduction methods

e Intrinsic tendency to exhibit dipole (or multipole) structures enforced by
orthogonality constraint between modes
e EOFs modes do not always coincide with specific climatic mechanisms

e Relevance of EOF modes as dynamical modes (or even proper statistical modes)
questionable

e Multiple superimposed patterns need to be considered

e Spatial patterns = strength of co-variability, unclear relevance of associated
temporal patterns in other regions not highlighted by the same EOF

* Integrated view on co-variability, pair-wise co-variability information is lost
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Complex networks appear in various scientific disciplines, including transportation
sciences, biology, sociology, information sciences, telecommunication, engineering,
economics, etc.

—> Solid theory of statistical evaluation
= Efficient numerical algorithms and multiple complementary measures
= Knowledge of interrelations between structure and dynamics
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A network (graph) is described by
* a set of nodes (vertices) V
* a set of links (edges) E between pairs of vertices
e eventually a set of weights associated with the nodes and/or links

Basic mathematical structure: A

A;=1 < nodesiand j are connected by a link

A;=0 < nodesiand j are not connected by a direct link
= binary matrix containing connectivity information of the graph
= undirected graph: A symmetric

Matrix of link weights W: A;=O(W;)
= transfer weighted into unweighted graphs by thresholding link weights
In the following: mainly unweighted and undirected networks
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ordered, mutually exclusive sequence of edges that connects two given
vertices.

Shortest paths (= graph/geodesic distance between two vertices):
= minimum sequence of edges between two given vertices
= for two given vertices, the shortest paths may not be unique

—> shortest path length |;: minimum number of edges between two vertices Note:
different conventions for vertices that belong to disjoint network components (l;;=N-
1 or infinity, depending on application)

general ordered sequence of edges that connects two given vertices (does
include possible multiple use of edges)

closed walk of a fixed length that excludes the initial vertex

oLy o c®sy.
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a given vertex

number of neighbors of a vertex k, = Z Ay

inverse average shortest path length of a vertex

N —1
{.ILI —_— 4""|'r

Zr’:l ly.i

relative fraction of shortest paths on the network that pass

L1

= 3 2

i,j#Zv

relative fraction of neighbors of a vertex that are mutual

neighbors of each other

,.-}

C, = N
k,(k,—1) "
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D

mean value of the local clustering coefficient taken over
all vertices

Y i AiA AL

I
==Y
W &= Y. iAkiAk;

relative fraction of 3-loops in the network

7 _ Y. ik AijA KAk
Y ik AriAkj

=> Both measures characterize closely related properties (asymptotic convergence),
but may differ for small graphs
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mean of |; taken over all pairs of vertices (or all pairs
of vertices belonging to the same network component)

2
L= = NN -1 > b

1<)

maximum graph distance between all pairs of vertices

D = maxy ; li,j

minimum value of maximum distance of a vertex in the network

R = min; max; l;

o_Lo_o c®sy.
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In general, network measures can be distinguished into different types:

Vertex measures: characterize properties of a single node
Edge measures: characterize properties of a single link
Global network measures: characterize properties of the entire graph

Local properties: measures that take only the adjacency information of a given
vertex into account

Meso-scale properties: measures that take adjacency information of a given vertex
and its neighbors in the graph into account

Global properties: measures that take full adjacency information of the whole
network into account
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Vertex measures

Edge measures

Global network
measures

Local information

Degree centrality

Edge density

Local clustering

Matching index

Global clustering
coefficient,

Reik V. Donner, reik.donner@pik-potsdam.de

Meso-scale coefficient, Mean
. . . (also for non- e
information nearest-neighbor . .. Transitivity,
existing edges) ..
degree Assortativity
Closeness
. Shortest path Average path
Global centrality, .
. . length, Edge length, Diameter,
information Betweenness . ..
. betweenness Radius, Efficiency
centrality
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Climate networks: General workflow

(Donner etal., 2017)
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Basic assumptions:

e Relevant processes in the (continuous) climate system can be approximated by an
underlying spatial network structure

e Statistical interdependences between climate variations at different locations
reveal corresponding network topology -
— also used in other fields (e.g., functional brain networks, economics)

Different possible types of climate networks based on climatological variable and
employed similarity measure (e.g. Pearson correlation, different types of mutual
information, event synchronization)
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Correlation climate networks and EOF analysis based on the same correlation matrix
* EOF analysis: eigenvector decomposition — linear transformation
e Climate network analysis: binarization by thresholding — nonlinear transformation

If EOF-1 dominates the data set (high fraction of explained variance): approximate
relationship between degree field and modulus of EOF-1 (Donges et al., Climate
Dynamics, 2015):
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Added value of climate network analysis:

e Commonly, more than just one EOF are statistically relevant — EOF-1 does not tell
the whole story

* Network allows investigating spatial structure of links (e.g., where are strong
correlations with a given location/region located?)

 EOF analysis just gives a single spatial pattern and time-dependent score per mode;
network analysis provides a multiplicity of characteristics that capture higher-order
statistical properties of the spatial correlation structure

e Aspects of spatio-temporal organization of climate variability hidden to EOF
analysis may be revealed
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1. Regional climate networks: boundary effects
2. Possibly spatially heterogeneous distribution of vertices

3. Which information is induced by spatial embedding, and which does
originate in dynamical properties?
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Boundary effects
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Fig. 1: (Color online) Top left: global closeness: closeness centrality of a random network on a sphere. The connection probability
depends only on the spatial link length and follows a power law with the exponent —3.5. Top right: corrected regional
closeness. Arrows point out areas of strong similarity (A) and dissimilarity (B) in the spatial patterns in the considered region.
Bottom left: closeness boundary effects estimate, taken as the median from 1000 surrogates. Bottom right: regional closeness:
closeness centrality on a part of the same network as on the whole globe (top left). Nodes in the depicted region are connected
if they are connected in the global network.

P
D

]
|
Il
1l

L

|

£2 C SYC<32

Reik V. Donner, reik.donner@pik-potsdam.de 19 /

=)
i

i




Boundary effects

Boundary effects estimate Corrected degree
0

. e A
10°E 10° 15°F

5°E 10°E 15°F

Fig. 5: (Color online) Uncorrected degree field for the network with 50% link density (A), the corresponding boundary effects

estimate (B) and the corrected measure (C).
Boundary effects estimate Corrected degree

(Rheinwalt et
al.,, 2012)

5°E 10°E 15°E

5°E 0°

Fig. 6: (Color online) Uncorrected degree field for the network with 25% link density (A), the corresponding boundary effects
estimate (B) and the corrected measure (C).
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Boundary effects

Belweenness Boundary effects estimate Corrected betweenness
0.0 0.8 1.6 2.4 3.B.0 0.8 1.6 2,4 321.6 —0.8 0.0 0.8 1.6
| e —— e —— S s — — ]
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Fig. 7: (Color online) Uncorrected betweenness field for the network with 25% link density (A), the corresponding boundary
effects estimate (B) and the corrected measure (C).

Closeness Boundary effects estimate Corrected closeness
0,32 0.40 0.48 —0,12 —0.08 —0.04 0,00

55°N

(Rheinwalt et 3 i
al., 2012) aS O 5% N .l e ! bl

A 47°N
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Fig. 8: (Color online) Uncorrected closeness centrality field for the network with 25% link density (A), the corresponding
boundary effects estimate (B) and the corrected measure (C).
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Traditional approach: replace degree by area-weighted connectivity

N
-

G = Zcus AA A/Z over all 2 and ¢ COS AAA

=1
Generalization: node-splitting invariant measures

+ — .. 5 : :
ﬂfj = djj + a':j (a) Sum up weights w, whenever the unweighted measure

counts nodes.
W = Ei'.'l:._-"!"'a Wi (b) Treat every node v € V as connected with itself.
- (c) Allow equality for v and g wherever the original mea-
sure mvolves a sum over distinct nodes v and gq.
(d) “Plug in” n.s.i. versions of measures wherever they
are used in the definition of other measures.
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Correction for represented area

Generalization: node-splitting invariant measures

(Heitzig et al., 2012)

Fig. 3. (Colour online) Comparison of unweighted and weighted
(n. s.i.) versions of degree (A,C) and clustering coefficient (B,D) in
the northern polar region (Lambert equal area projection) of a global
climate network representing correlations in temperature dynamics.
The high values at the pole in (A,B) turn out to be an artefact of the
increasing grid density toward the pole, as demonstrated by (C.D). 20 100 180 260 340 420

n.s.i. degree (Arctic)
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Generalization: node-splitting invariant measures

90°W 0° 90°E n.s.i. Newman random walk betweenness

Batucemness (098G 1) LI LT
_- [ [ 1 v- 0002 0004 0006 0008 001 0012 .0014 0016 .0018 .002 0022

434 BB7 1301 1,735 2,188 2602 3036 3463 3903 4337 477 5204 5638 6071

Fig. 13. (Colour online) N.s.i. version NB] of Newman’s random
walk betweenness in a global climate network representing correla-
tions in surface air temperature dynamics (same network as in Fig. 4,
Robinson projection). We can clearly identify the regions of the North

oy o Pacific Subpolar Gyre, the North Atlantic Subtropical Gyre including
(Don ges etal °’ (H eitzi g et al 0 the Gulf Stream and the Canary Current, the North and South Equa-
2009) 20 1 2) torial Currents in the Pacific, and the Antarctic Circumpolar Current.

The interpretation of other regions of high values like Scandinavia and
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Central and North-East Africa remains unclear.
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Correlation-based climate networks (yesterday’s talk)

Event-based climate networks

Coupled climate networks

Scale-specific climate networks
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Example: Indian summer monsoon precipitation - fraction of grid points with
statistically significant event synchronization (event = daily precipitation
exceeding (A) 94% and (B) 90% quantile)
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(Malik et al., Clim. Dyn., 2012)
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Fig. 8 Local clustering
coefficient 4; a o0 = 94%,

b & = 90%. Red colours
indicate that the rainfall field is
less spatially continuous, i.e., it
is fragmented. In contrast, blue
colours outline more spatially
continuous rainfall fields. We
observe that %; is independent
of the spatial scales involved in
the rainfall (compare with

Fig. 7a)

Fig. ¥ a Closeness centrality
Cej. We observe high Cgy; in the
northwestern parts of the
subcontinent suggesting the
importance of atmospheric
processes in modulating the
ISM activity. b Betweenness
centrality Cg;. Higher values of
Cpg; represent the moisture
transport pathways over the land
during the active phase of the
ISM. For both a and b we chose
o = 90%
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(Malik et al., 2012)

Fig. 10 Links between a set of

50 reference grid points Ll
(gridded red matrix) to other

grid points {(colour bar) at 30%N
o = 90%. Note the spatially

extensive links for a reference ason |+
area in northwestern Pakistan

(a). In contrast, extreme rainfall 20N

linkages in the western Ghats
(d) have a limited spatial extent 157
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Degree patterns are largely determined by temporal clustering of events: strong
clustering = only short time differences allowed = few ES connections

Degree density

; ‘,ﬁ~ 0.150
: o 0.125
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A & Donner, in prep.)
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Additional parameters: control of acceptable time lags — resolves different scales

Excluded for plE‘ClllbOl Coin—
cidence rate r,(i|j: AT. 1
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Grid point 7 » time
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Grid point j e — ‘ h\\
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Additional parameters: control of acceptable time lags — resolves different scales

D

0.20

0.15

(Odenweller & Donner, in prep.)
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Coupled climate networks

Hierarchical and multi-domain
interactions in Earth system

Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle
Changes in
Solar Inputs
Fa -Clouds
Atmosphere N——r

N, O, Ar,
H,0, CO,, CH, N,0, O,, etc.

Aerosols
Atmosphere-
lee Precipitation
Interaction Evaporation

Terrestrial
Radiation “Hum

Volcanic Activity e

Atmosphere-Biosphere
Interaction

Heat Wind
Exchange Stress

Land Surface

Changes in the Cryosphere:
Snow, Frozen Ground, Sea Ice, Ice Sheets, Glaciers

[
Ocean .

lee-Deean Coupling PER i i Hydrosphere:
g I Rivers & Lakes

Changes in the Ocean:
Circulation, Sea Level, Biogeochemistry

Changes infon the Land Surface:
Orography, Land Use, Vegetation, Ecosystems
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Cross-degree

G,
Ki=2 -7
x \ - -
ki=0
w
Cross-clustering
G,
CVH—1 ’_--'--'l—-
Ci=0
G;
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Coupled climate networks

e Study statistical
interdependency
structure between
climatological fields

e Conceptually and
formally linked to
maximum covariance
analysis (SVD of cross-
covariance matrix)

Donges et al., Eur. Phys.]. B 84 (201 1)
Donges et al., Climate Dynamics (2015)



Atmospheric general circulation

V' v ®»- ﬁ” P Atmosphere

E, _ Atmosphere

Donges et al., Eur. Phys.|. B 84 (201 1)



Atmospheric vertical dynamical

structure
e Cross-link density g ' ' ' 703
ELD e T=0.4[
shows extrema close to b == T-03]
L
e Planetary boundar N T —
y y .E” 0R % *‘1___ 11..___
layer A
-
0,00 0,05 0,10 0,15 0,20 0,25
cross - link density

® Tropopause

Donges et al., Eur. Phys. ].B 84 (201 1)



Atmospheric general circulation

® Cross-degree shows
convection cells and
meridional circulation

=
[=]
Cross-degree up

Latitude (°N)
® Cross-betweenness o L o
. . . ' 9 a0 0w
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arctic polar vortex z . Nl -
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Donges et al., Eur. Phys.|. B 84 (201 [)



" v »- ﬁii /K Atmosphere

~ ®
H}L-”JJM EH ,_f"fﬁ {]{Eﬂ“

D
D

|

lu|D

L'u'J
=)

|
il

Reik V. Donner, reik.donner@ pik-potsdam.de 39 \/\/




® [ntroduce node weights
to network statistics
(node splitting invariant
measures)

® Relationship between
cross-degree and
clustering indicates

in ocean-atmosphere
interactions

D
D
D

B e

Fig. 6 N.s.i. local cross-clustering coefficients CL*(k1*) for
nodes in the SST field (A) and C;*(x;*) for nodes in the
100 mbar HGT field (B) as functions of the respective n.s.i.
cross-degree densities. The dashed line in (A) indicates the
relationship Ci*(k1*) ~ (k1*)~1 expected for traditional net-
work measures C(ky) in the case of hierarchical network
structures (Ravasz and Barabasi, 2003; Ravasz et al, 2002).

(Wiedermann et al., Int. J. Climatol., 2017)
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Hierarchical coupling structure

150°W 180° 150°E

120°W

& % |
30°W  0°  30°E

120°W

150°W 180° 150°E

90° W}

o g
=
oy
a S #
o g

. N

30°wW  0° 30°E

(Wiedermann et al., Int. J. Climatol., 2017)
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Climate variability patterns depend on temporal scale of dynamics — reflected in scale-
dependent networks obtained for filtered climate data

amplitude phase recanstructed-signal
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Idea: identification of key “modes” via dimensionality reduction/community detection
in scale-dependent climate networks (and cross-scale coupled climate networks)

Example: South American Monsoon System (new project)
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* (Correlation) climate network analysis as extension and complement of classical
EOF analysis

e Extensions to other (nonlinear) similarity measures (e.g. event-related statistics)
and coupling structures among different subsystems

* Coupled climate network analysis allowing to resolve previously unknown
structural organization features among different climate subsystems

Python package pyunicorn for climate network analysis at GitHub (Donges et al.,
Chaos, 2015)

0® 2%

oy
C O

pyunicorn
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