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1. How to formulate causal inference for complex dynamical systems?

2. How to detect causal links?

3. How to quantify causal interactions?



How to formulate causal
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Causal discovery

Granger causality
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PCMCI = PC;-condition selection + MCI test

1. Condition selection (Markov blanket)
For j € {1,..., N}: Estimate superset of
parents P(X!) such that N O 5 U .
X, 1L X7\ P(X{) | P(X]) with iterative

PC; algorithm: tuned to high power with S
liberal o, false pos. control in next step!
2. Momentary conditional independence
(MCQI) test
Fori,je{l,...,N} and 0 < 7 < Tpax: S 80.
Test N N
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Flexible regarding conditional independence tests
here ParCorr (OLS), Gaussian processes — paper 6
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Condition-selection significance level (!
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More theory in paper:
If PC; identifies parents, then

e MCI has unbiased detection power for linear links in additive models
jMcCl

XSy =1 (s en, +n))
e MCI is well-calibrated also for autocorrelated data
o effect size of MCl is larger than GC — more power also for low

dimensions
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Conditional independence tests X 1L Y | Z

Assuming linear model: Partial correlation (ParCorr)

1. Regress out influence of Z with OLS
X =ZBx +ex
Y =20y + ¢y
Ridge and Lasso implemented with scikit-learn on standardized time series
e Ridge regularization: LOO-cross-validated regularization parameter
a€{0.1,1,2,...,500}
e Lasso regularization: multi-task lasso,
a € {0.0001,0.001,0.01,0.1,1} using 5-fold cross-validation, max.
iterations = 100
2. Test independence of residuals with t-test
e OLS: T — D7 — 2 degrees of freedom



Conditional independence tests X 1L Y | Z

Assuming nonlinear additive Gaussian: GPDC

1. Regress out influence of Z with Gaussian process assuming

X = fx(Z)—‘rGX
Y = fy(Z)+€y
e ~ N(0,0?)

GP regression implemented using sklearn
e Radial Basis Function (RBF) + White Noise kernel
e bandwidth estimated with MLE
2. Test independence of uniformized residuals with distance correlation
coefficient [Székely et al., 2007]
R (rx,ry)

using pre-computed null distribution (for every T)



Conditional independence tests X 1L Y | Z

General: Conditional mutual information (CMI)

, _ ' p(x, y|2)

10612) = [ a9 [ [ oy o teios o30S
Estimated with KNN-estimator
[Kraskov et al., 2004,
Frenzel and Pompe, 2007]
Free parameter: number of
nearest neighbors k ~ locally
adaptive bandwidth

10



Conditional independence tests X 1L Y | Z

Dependency ParCorr GPACE | GPDC CMiknn
X Y b S

~ \w/ \&/

linear, ﬁ " * ﬁ " ,ﬁ_

additive noise

N

NS iRy a s
nonlinear, —_— —ﬂ— ‘m\z /,ﬁ\

additive noise 7

X %
\ / X
z e
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11



Causal assumptions

Causal interpretation assumes [Spirtes et al., 2000]:

e Causal Markov Condition: “All the relevant probabilistic
information that can be obtained from the system is contained in its
direct causes”

e Causal Sufficiency: Measured variables include all of the common
causes

e Faithfulness / Stableness: “Independencies in data arise not from
incredible coincidence, but rather from causal structure”; violated by
purely deterministic dependencies

12
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Causal assumptions

Causal interpretation assumes [Spirtes et al., 2000]:

e Causal Markov Condition: “All the relevant probabilistic
information that can be obtained from the system is contained in its
direct causes”

e Causal Sufficiency: Measured variables include all of the common
causes

e Faithfulness / Stableness: “Independencies in data arise not from
incredible coincidence, but rather from causal structure”; violated by
purely deterministic dependencies

e No contemporaneous effects: (but can be extended)
e Stationarity: time series case

e Parametric assumptions of independence tests

More discussion — appendix
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Numerical experiments

GC suffers from curse of dimensionality and power bias
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Numerical experiments

GC suffers from curse of dimensionality and power bias
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Numerical experiments

Lasso not well-calibrated and power bias
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Numerical experiments

PC algorithm also low and biased power
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Numerical experiments

Key idea again
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Applications

e Causal hypothesis testing
[Runge et al., 2014, Runge et al., 2015¢c, Kretschmer et al., 2016]

e Variable selection for model building

e ..or prediction schemes
[Runge et al., 2015a, Kretschmer et al., 2017]

e Pathway analysis [Runge et al., 2015b, Runge, 2015]

15



Global sea-level pressure interactions

Sea-level pressure system [Kalnay et al., 1996]

e detrended, anomalized, winter-only (DJF) of 1981-2012

e dimension reduction using Varimax-rotated PCA
[Vejmelka et al., 2014]

e time resolution: 3-days, Tmax = 3 weeks

16



Global sea-level pressure interactions

Sea-level pressure system [Kalnay et al., 1996]

"
30°s

60°E 120°E 180° 120°W 60°W

e detrended, anomalized, winter-only (DJF) of 1981-2012

e dimension reduction using Varimax-rotated PCA
[Vejmelka et al., 2014]

e time resolution: 3-days, Tmax = 3 weeks

16



Global sea-level pressure interactions

Sea-level pressure system [Kalnay et al., 1996]

60°E 120°E 180° 120°W 60°W

e detrended, anomalized, winter-only (DJF) of 1981-2012

e dimension reduction using Varimax-rotated PCA
[Vejmelka et al., 2014]

e time resolution: 3-days, Tmax = 3 weeks

16



Global sea-level pressure interactions

Sea-level pressure system [Kalnay et al., 1996]

60°E 120°E 180° 120°W 60°W

e detrended, anomalized, winter-only (DJF) of 1981-2012

e dimension reduction using Varimax-rotated PCA
[Vejmelka et al., 2014]

e time resolution: 3-days, Tmax = 3 weeks

16



Global sea-level pressure interactions

Sea-level pressure system [Kalnay et al., 1996]

60°E 120°E 180° 120°W 60°W

e detrended, anomalized, winter-only (DJF) of 1981-2012

e dimension reduction using Varimax-rotated PCA
[Vejmelka et al., 2014]

e time resolution: 3-days, Tmax = 3 weeks

16



Global sea-level pressure interactions

Sea-level pressure system [Kalnay et al., 1996]

60°E 120°E 180° 120°W 60°W

detrended, anomalized, winter-only (DJF) of 1981-2012

e dimension reduction using Varimax-rotated PCA
[Vejmelka et al., 2014]

time resolution: 3-days, Tmax = 3 weeks

NTmax = 60 - 7 = 420 with a comparably small sample size of about
950 samples and partially strong autocorrelations
16



Climate applications

Spurious correlation vs MCI
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' 55 152 e even strong correlations
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Climate applications

IMCl|

Granger causality vs MCI
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e many even strong causal
links overlooked with GC
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How to quantify causal
interactions?




Causal strength




MCI and causal strength

Defining causal strength
time I Xe—r = gx (P (Xe—7)) + 775—7—
Ye =gy (P(Ye) \ {Xe—r}) + i)

with link X;_,. — Y; represented as
ﬁty = f(Xe—r) + 77tY

e
Ni—r

Causal strength

(i [P (Xer)
measures “momentary” dependence
in /r”;ty on X;_, that does not come
through the parents of X;_.
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MCI and causal strength

Defining causal strength

N Xeer = x (P (Xeer)) + 0
- Ye =gy (P (YO \{Xer}) + 71
}\ Mimr =% with link X;_, — Y; represented as
> iy = f(Xeer) +n)

X, . f un
Causal strength

Y, (i [P (Xer)
measures “momentary” dependence
in /r”;ty on X;_, that does not come
through the parents of X;_.
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MCI and causal strength

Definition

MCl: Xe—r 1L Y, ‘ 7)(Yl“) \ {thT}’ ,P(th‘r) (1)

20



MCI and causal strength

Definition
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MCI and causal strength

Definition

/)IEIS{/( ) /(th‘r ¢ | P(Yt) \ {thT}’ P(thr)) (1)

1. MCI measures causal strength

IMCL — [ (gx (pxt DAms s ey Py X )+ | )
:I(r]t T'r]t ‘ th 7—) D

2. MCI has unbiased detection power for linear links

iy = Xeer + 10 = c(gx Px_,) +m5,) +n

IMCI

= Y =1 (el +n))

3. MCI leads to well-calibrated test
MCI

~Y Y X .Y
Ny =1 = Ix3y =1 (77t—rv77t ) =0
20



MCI, GC, and PC

1. Generally: GC < MCI (— GC has lower power)

IKSy(r) =1 (Xe—r; YelXT\ { Xt~ })

I((X,2); YIW) = [(X; Y|W)+1(Z; Y|W, X)
7 MCI =0 (Markov)
= 1(Z; Y|W)+1(X; Y|WZ)
>0 GC

= /)1243{/( ) > IX—>Y( ) O

21



MCI, GC, and PC

2. Single PC test has more power, but is non-iid

IEEY(T)

I (Xe—r; Yel P (Yo)\ {Xe—r })
I (P (Xeer): Ve[ P (Ye) \ {Xe—r })
I(P(Xe—7); YeP(Ye) \ {Xe=+})

typically non-iid

+/ (nfi,r; Ye|P(Yo)\{Xe—r}, P (th'r))

MCI

= KEV(1) < KSy(7)
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MCI and causal strength

Effect size analysis for simple model

A

=T < = N
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Cl and causal strength

Effect size analysis for simple model

A

= < = N

Cxz

I [nats]
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Mi
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MClI
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0.1

0.0
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Autocorrelation ay
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MCI and causal strength

Effect size analysis for simple model

A c 0.6

t—3 t—2 t—1 t 0.5
Z a
0.4}
Cxz )
ax © 0.3
X {3 =
CXY ~ o2l
CwXx
Y 9 0.1
i 8
W a o'91.0 -05 0.0 0.5 1.0 1.5
— Common driver cyx
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MCI and causal strength

Effect size analysis for simple model

A D 0.6

o M P ——— e ——
t-3 t-2 t-1 ¢ 0.5 || == pc/imy
a = GC
A 0.4 1w MCI
Cxz )
ax © 0.3
X {3 £
Cxy ~ 02l
Cwx
v SE wf—/—
cwy
0.0
W a 0.0 0.5 1.0 1.5 2.0
External effect cxy
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MCI and causal strength

Effect size analysis for simple model

A D 0.6

o M P ——— e ——
t-3 t-2 t-1 ¢ 0.5 || == pc/imy
a = GC
A 0.4 1w MCI
Cxz }ﬂ
ax © 0.3
X {3 £
Cxy ~ 02l
Cwx
Y 4 0.11
— D \
w a o'Oo.o 0.5 1.0 1.5 2.0
— External effect cxy

General proof for ‘unbiased’ detection power — paper
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Quantifying causal pathways




Quantifying causal pathways

Linear approach: Mediated Causal Effect (MCE)
Y: = f(Py) + error = Py - B+ error

X (0%
Z1
ﬁ\ ’Y’WZ c e Direct links: path coefficients
Wi 5

Z a7/87fy’57€
4 Y
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Quantifying causal pathways

Linear approach: Mediated Causal Effect (MCE) o
Y: = f(Py) + error = Py - B+ error
Z1
e Direct links: path coefficients
B a, B, 7,0, ¢
e Indirect causal effect:
CEx_y = aec + 80 + Bye

Z2
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Quantifying causal pathways

Linear approach: Mediated Causal Effect (MCE) o
Y: = f(Py) + error = Py - B+ error
Z1
e Direct links: path coefficients
B a, B, 7,0, ¢
e Indirect causal effect:
CEx_y = aec + 80 + Bye
e Mediated causal effect:
MCEx . yjw, = B0 + Bve

Z2
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ifying causal pathways

Climate application: East Pacific — Monsoon pathway
Here whole year analysis [Runge et al., 2015b]

ZAEe sg/vﬂCf - lags in weeks e causal approach to
SV [0 i
e o5 atmospheric
i B3 , i 30°N
‘ : = teleconnections
S g —— o
Py pray
- - (/’\A \ 3°s
B60°E 120°E "\80" 120°W
-0.08 -0.04 0.00 0.04 0.08 -0.2 0.0 0.2
MCE (node color; Path coeff. (link color)
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Network analysis

Climate application
Here whole year analysis [Runge et al., 2015b]

° Average Causal EfFect (ACE)

ouT
Ave. max
Causal IN ACE(i N_1 Z CEZ)
Effect 7
° Average Causal Susceptibility
ACS(j) = 57— D CE

l#f



Network analysis

Climate application

Here whole year analysis [Runge et al., 2015b]

e uplifts over
tropical oceans
are major drivers

n/o\m

( 3% 44%

0° 60°E 120°E 180° 120°W 60°W

HI\HIIII_

0.00 0.04
ACS (inner node) and ACE (outer rmg)
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Network analysis

Climate application
Here whole year analysis [Runge et al., 2015b]

e Average Mediated Causal Effect

Ave.

Mediated (AMCE) 1

Causal AMCE(i) = >~ max|MCE;_(7)]
Effect Ckl ’

(ij)€Ck

27



Network analysis

Climate application
Here whole year analysis [Runge et al., 2015b]

b .

) e uplifts over
tropical oceans
also major

mediators

Max[C]/¢,
82%

0° 60°E  120°E 180° 120°W 60°W

0.0000 0.0005 0.0010 0.0015 0.0020
AMCE
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Quantifying causal pathways

Information-theoretic approach [Runge, 2015]

§7]X (X Y|Z) =
Z y [ dzp(z) [[ dxdy p(x,y|z)log %
2
\ 4 \ e Direct links: Momentary information
5 A transfer (MIT)
IXEY = 1(X; Y|Py, Px)

Z3
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Quantifying causal pathways

Information-theoretic approach [Runge, 2015]

X 1(X;Y|Z)=
Z1 p [ dzp(z) [[ dxdy p(x,y|z)log %
2
\» 4 e Direct links: Momentary information
Wi

transfer (MIT)

’ RN = 106 Y [Py, Px)
% e Indirect paths: Momentary information
transfer along paths (MITP)
Xe = f(Px) + 17 TP (2) = 1(X; Y|P paths)

EN =155 Ye | Ppaths)
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Quantifying causal pathways

Information-theoretic approach [Runge, 2015]

X 1(X;Y|Z)=
Z1 A [ dzp(z) [[ dxdy p(x,y|z)log %
2
> 4 e Direct links: Momentary information

transfer (MIT)

V4]
IXEY = 1(X; Y|Py, Px)
% e Indirect paths: Momentary information

transfer along paths (MITP)

Xe = f(Px) + MR (7Y = 1(X; Y[ Ppaths)

&1_13}) = 1(775—3 i Ye | Ppatns) e Mediation: Momentary interaction
information (MII)
TS viws = L0025 Wa,e-2; V2| Pparns) M w(7) = REY(7)

— 1(X; Y | Ppaths, W)
MITP conditioned on W
29




Quantifying causal pathways

Information-theoretic approach [Runge, 2015]

t—3 t—-2 t—1 t MITP
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Discussion and conclusion

e framework for reliable large-scale time-lagged causal discovery

Python code on https://jakobrunge.github.io/tigramite/

Paper: J. Runge, D. Sejdinovic, S. Flaxman (2017):
https://arxiv.org/abs/1702.07007
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— nodes can be multivariate, variables discrete, ...

interpretable MCI statistic measures causal strength
— ranking causal links in large-scale analyses

Causal pathway analysis [PRE Dec 2015]

Causal complex network measures [Nature Comm. 2015]
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Discussion and conclusion

framework for reliable large-scale time-lagged causal discovery

flexible regarding (non-parametric) conditional independence tests
— nodes can be multivariate, variables discrete, ...

interpretable MCI statistic measures causal strength
— ranking causal links in large-scale analyses

Causal pathway analysis [PRE Dec 2015]

Causal complex network measures [Nature Comm. 2015]

Optimal prediction [PRE May 2015]

Python code on https://jakobrunge.github.io/tigramite/

Paper: J. Runge, D. Sejdinovic, S. Flaxman (2017):
https://arxiv.org/abs/1702.07007
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Tigramite 3.0 — tigramite_tutorial.ipynb

https://jakobrunge.github.io/tigramite/

independence_tests.
ParCorr/GPDC/CMIknn/CMIsymb (
use_mask, mask_type, significance,
confidence)

pcmci.PCMCI (dataframe,
data_processing cond_ind_test)

preprocessing functions .
run_pcmci(tau_max, pc_alpha,

fdr_method)

DataFrame(data, mask,
Returns: p_matrix, q_matrix, val_matrix

missing_flag

models.Prediction(

dataframe, train_indices,
test_indices, prediction_model,
data_transform, cond_ind_model,

models.Models (dataframe, missing_flag)

model, data_transform,

models.LinearMediation use_mask, mask_type, get_predictors(steps_ahead,
(dataframe, data_transform, wissing_flag) tau_max, pc_alpha)
use_mask, mask_type, Wrapper around sklearn Returns: predictors
missing_flag) fit(target_predictors)
get_fit(all_parents) predict(target)
Returns: fitted model Returns: prediction results
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Causal discovery challenges
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Causal interpretation assumes [Spirtes et al., 2000]:

e Causal Markov Condition: “All the relevant probabilistic
information that can be obtained from the system is contained in its
direct causes”

e Causal Sufficiency: Measured variables include all of the common
causes

e Faithfulness / Stableness: “Independencies in data arise not from
incredible coincidence, but rather from causal structure”; violated by
purely deterministic dependencies
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Causal interpretation assumes [Spirtes et al., 2000]:

e Causal Markov Condition: “All the relevant probabilistic
information that can be obtained from the system is contained in its
direct causes”

e Causal Sufficiency: Measured variables include all of the common
causes

e Faithfulness / Stableness: “Independencies in data arise not from
incredible coincidence, but rather from causal structure”; violated by
purely deterministic dependencies

e No contemporaneous effects: (but can be extended)
e Stationarity: time series case

e Parametric assumptions of independence tests

More discussion — appendix



Causal assumptions

Causal Markov Condition

“All the relevant probabilistic information that can be obtained from the
system is contained in its direct causes”

Formally: Upon specifying a complete graph that contains all common
causes: separation in graph entails at least implied conditional
independencies in process
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Causal assumptions

Causal Markov Condition
“All the relevant probabilistic information that can be obtained from the

system is contained in its direct causes”

Formally: Upon specifying a complete graph that contains all common
causes: separation in graph entails at least implied conditional

independencies in process

Structural equation modeling

framework:
Xt = f(X¢,m) m AL X \ X




Causal assumptions

Causal Sufficiency
R. Scheines: “Theory of causal inference is about the inferential effect of
a variety of assumptions far more than it is an endorsement of particular

assumptions”

Given estimates X 1L Z | Y and no other independencies. Assuming

only Markov condition and faithfulness allows for several different graphs:
time
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Assuming sufficiency
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Causal assumptions

Faithfulness
If there are any independence relations in the population that are not a
consequence of the Causal Markov condition (or d-separation), then the
population is unfaithful.

For example, given three variables and assuming the Causal Markov and
Sufficiency Conditions, suppose we measure these (in-)dependencies:
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Causal assumptions

Stationarity of causal structure
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Stationarity of causal structure
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Stationarity of causal structure
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periodically structurally stationary

e structurally, not necessarily same strengh / parameters

e masking implemented in Tigramite
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