Modeling and governing feed-backs between ecological and economic dynamics

Martin F. Quaas

Department of Economics Christian-Albrechts-Universität zu Kiel

October 2013

Martin F. Quaas Modeling and governing feed-backs between ecological and economic dynamics

Environmental and Resource Economics; Ecological Economics

Sustainability economics

- **1** Subject focus: relationships between humans and nature.
- **2** Orientation towards (uncertain) future.
- **3** Normative foundation of sustainability: <u>justice</u> in the relationships between
 - presently living humans (<u>intragenerational</u> justice)
 - future generations of humans (<u>intergenerational</u> justice)
 - non-human nature
- 4 Concern for efficiency: non-wastefulness

Baumgärtner and Quaas (2010). What is sustainability economics? *Ecological Economics* 69:445–450.

Environmental- and Resource Economics; Ecological Economics

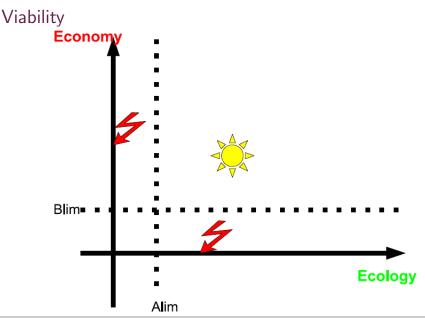
General Approach

- **1** Descriptive model: Ecological and economic dynamics
- 2 Normative criteria to evaluate outcomes
- Policy recommendations: Which institutions and instruments achieve the desired outcome?

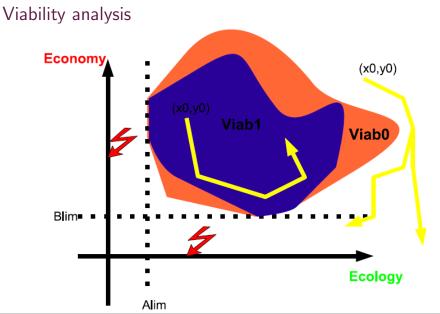
Baumgärtner/Becker/Frank/Müller/Quaas (2008). Relating the Philosophy and Practice of Ecological Economics. The Role of Concepts, Models and Case Studies in Inter- and Transdisciplinary Sustainability Research. *Ecological Economics*, 67(3):384–393. 3/32

Questions and Issues

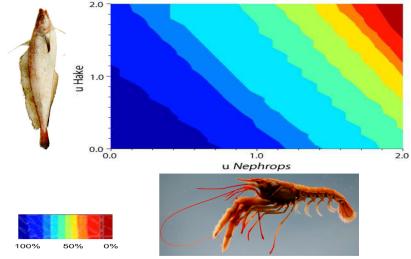
- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)


Questions and Issues

- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)

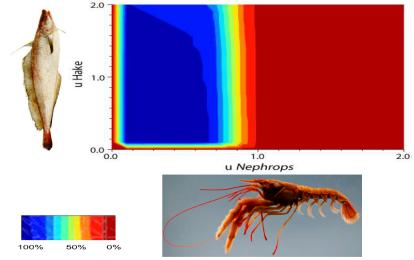

Viability

Luc Doyen (2013). Mathematics on Planet Earth Trimester *Mathematical Bioeconomics*, IHP (Institut Henri Poincaré), Paris 5/32



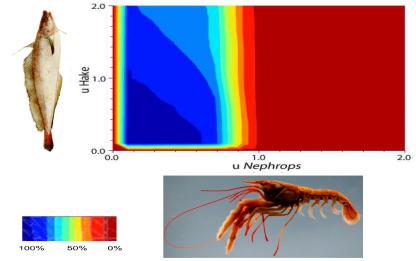
Doyen/Cissé/Gourguet/Mouysset/Hardy/Béné/Blanchard/Jiguet/Pereau/Thébaud (2013). Ecological-economic modelling for the sustainable management of biodiversity, Comput Manag Sci DOI 10.1007/s10287-013-0194-2

Doyen/Cissé/Gourguet/Mouysset/Hardy/Béné/Blanchard/Jiguet/Pereau/Thébaud (2013). Ecological-economic modelling for the sustainable management of biodiversity, Comput Manag Sci DOI 10.1007/s10287-013-0194-2 7


Stochastic Viability: Multi-Species Fisheries

probability of ecological viability

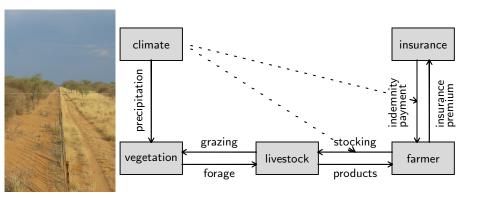
Doyen/Thébaud/Béné/Martinet/Gourguet/Bertignac/Fifas (2012). A stochastic viability approach to ecosystem-based fisheries management, *Ecological Economics* 75:32–42. 8/32


Stochastic Viability: Multi-Species Fisheries

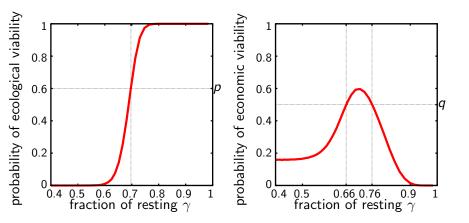
probability of economic viability

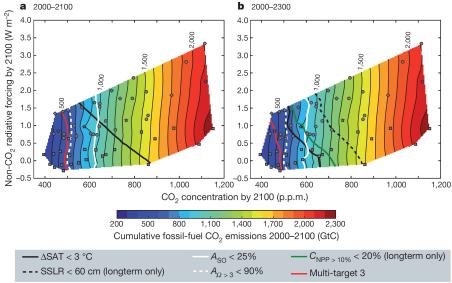
Doyen/Thébaud/Béné/Martinet/Gourguet/Bertignac/Fifas (2012). A stochastic viability approach to ecosystem-based fisheries management, *Ecological Economics* 75:32–42. 8/32

Stochastic Viability: Multi-Species Fisheries



probability of ecological and economic co-viability


Doyen/Thébaud/Béné/Martinet/Gourguet/Bertignac/Fifas (2012). A stochastic viability approach to ecosystem-based fisheries management, *Ecological Economics* 75:32–42. 8/32



Stochastic Viability: Rangelands

Baumgärtner/Quaas (2009). Ecological-economic Viability as a Criterion of Strong Sustainability under Uncertainty. *Ecological Economics*, 68:2008–2020. 10/32

Stochastic Viability: Global Climate

Contour lines: 66% Chance of complying with viability constraints.

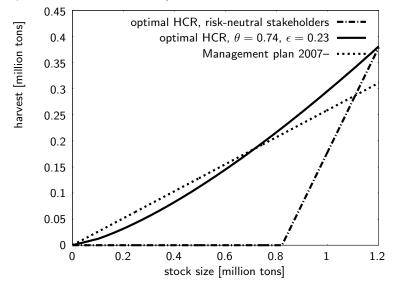
Steinacher/Joos/Stocker (2013). Allowable carbon emissions lowered by multiple climate targets, *Nature* 499:197–201.

Questions and Issues

- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)

Maximizing expected present value of utility

$$\max_{\{x_t\}} E \sum_{t=0}^{\infty} \delta^t U(\pi(s_t, x_t))$$

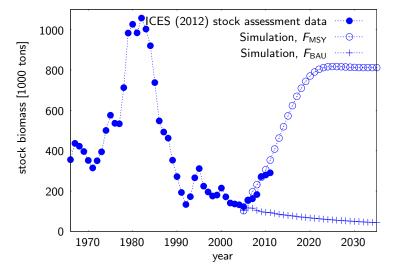

- s_t : stock size; x_t : harvest
- $\delta < 1$: discount factor
- method: stochastic dynamic programming
- solution: optimal feedback policy (in fisheries often termed harvest-control rule; HCR)

McGough/Plantinga/Costello (2009). Optimally Managing a Stochastic Renewable Resource under General Economic Conditions, *B.E. J Econ Analysis & Policy*, 9(1), 56. van Dijk/Haijema/Hendrix/Groeneveld/van Ierland (2013). Fluctuating quota and management costs under multiannual adjustment of fish quota. *Ecol Modelling* 265:230–238. 13/32

Maximizing expected present value of utility

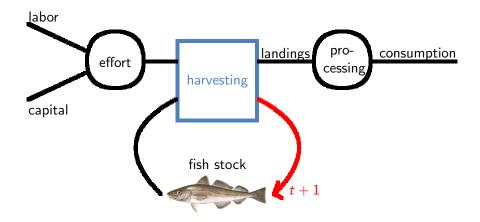
Example: Eastern Baltic cod fishery

Kapaun/Quaas (2013). Does the optimal size of a fish stock increase with environmental uncertainties? *Environmental and Resource Economics* 54(2):293–310. 14/32

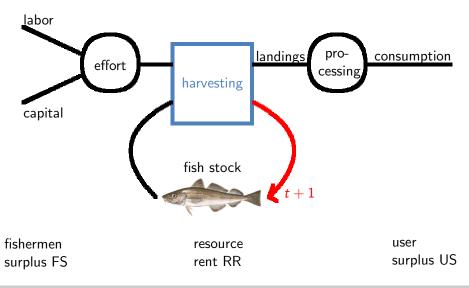

Questions and Issues

- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)

Eastern Baltic cod fishery

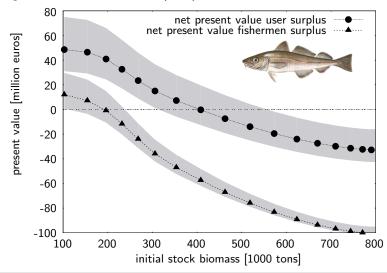

maximum sustainable yield (MSY) management vs. business as usual (BAU)

Quaas/Stoeven (submitted). Public and private management of renewable resources: Who gains, who loses?


16/32

Sustainable fishery management: Who gains, who loses?

Quaas/Stoeven (submitted). Public and private management of renewable resources: Who gains, who loses?


Sustainable fishery management: Who gains, who loses?

Quaas/Stoeven (submitted). Public and private management of renewable resources: Who gains, who loses?

Sustainable fishery management: Who gains, who loses?

Comparing present value of benefits under maximum sustainable yield (MSY) management vs. business as usual (BAU)

Quaas/Stoeven (submitted). Public and private management of renewable resources: Who gains, who loses?

Questions and Issues

- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)

Interactions in multi-species fisheries

ecological interactions: predator-prey, competition, symbiosis

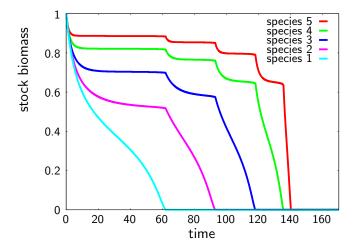
Quaas/Requate (2013). Sushi or fish fingers? Seafood diversity, collapsing fish stocks, and multi-species fishery management, *Scandinavian Journal of Economics* 115(2):381–422. 20/32

Interactions in multi-species fisheries

- ecological interactions: predator-prey, competition, symbiosis
- economic interactions: technical (bycatch),

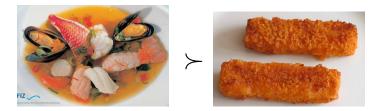
Quaas/Requate (2013). Sushi or fish fingers? Seafood diversity, collapsing fish stocks, and multi-species fishery management, *Scandinavian Journal of Economics* 115(2):381–422. 20/32

Interactions in multi-species fisheries


- ecological interactions: predator-prey, competition, symbiosis
- economic interactions: technical (bycatch), <u>demand-side</u>

trade in fishery products, million US \$, FAO SOFIA 2012

Quaas/Requate (2013). Sushi or fish fingers? Seafood diversity, collapsing fish stocks, and multi-species fishery management, *Scandinavian Journal of Economics* 115(2):381–422. 20/32


Demand-side interactions between fisheries

Quaas/Requate (2013). Sushi or fish fingers? Seafood diversity, collapsing fish stocks, and multi-species fishery management, *Scandinavian Journal of Economics* 115(2):381–422. 21/32

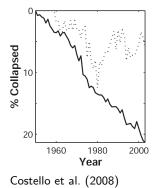
TWO ASPECTS OF OVERFISHING

consumer value seafood diversity: 'love of variety'

 collapse of fish stocks is economic problem on top of inefficiently low stocks and yields

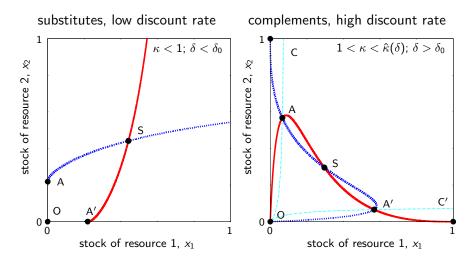
Quaas/Requate (2013). Sushi or fish fingers? Seafood diversity, collapsing fish stocks, and multi-species fishery management, *Scandinavian Journal of Economics* 115(2):381–422. 22/32

TWO ASPECTS OF OVERFISHING


1 inefficiently low stocks and yields

- extensively studied
- fundamental principles well understood
- e.g. Clark (1990)

2 collapse of stocks at world-wide scale


- recognized more recently
- has become focus of scientific interest and public concern in the last years

Costello et al. (Science, 2008) Heal and Schlenker (Nature, 2008) Worm et al. ((Science, 2006)

Quaas/Requate (2013). Sushi or fish fingers? Seafood diversity, collapsing fish stocks, and multi-species fishery management, *Scandinavian Journal of Economics* 115(2):381–422. 23/32

Coupled ecological-economic system may have multiple equilibria even if the natural system has not

Quaas/van Soest/Baumgärtner (2013). Complementarity, impatience, and the resilience of natural-resource-dependent economies. *J Env Econ Management* 66(1):15–32. 24/32

Questions and Issues

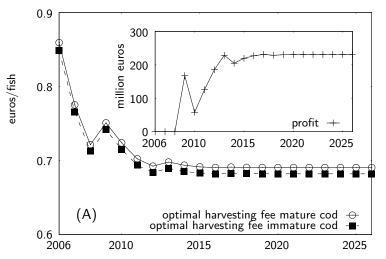
- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)

GROWTH OVERFISHING: EXAMPLE OF BALTIC COD

Baltic Sea, early 1980s

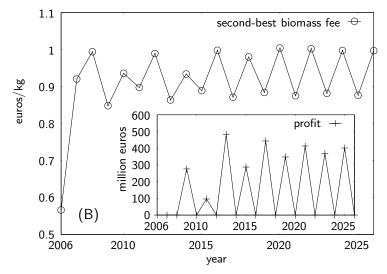
GROWTH OVERFISHING: EXAMPLE OF BALTIC COD

Fishing Quotas in Terms of Numbers vs. Biomass


Proposal for new design of regulation

- Total allowable catch (TAC) in number of individual fish
- System of tradable quotas (TQ) in numbers of individual fish and appropriate exchange rates

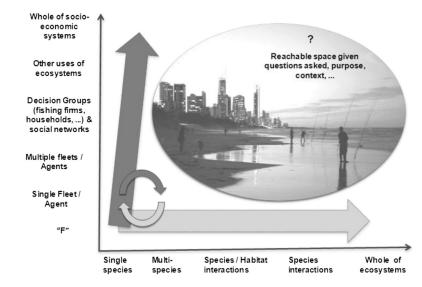
Conventional biomass management	New individual-based management
TAC in tons of biomass	TAC in number of individual fish
TQs in tons of biomass save fishing cost but have no positive effect on stock	TQs in numbers save fishing cost and set incentives that prevent growth overfishing
Gear restrictions are necessary to pre- vent growth overfishing	Fisherman decides on fishing gear


Quaas/Requate/Ruckes/Skonhoft/Vestergaard/Voss (2013). Incentives for Optimal Management of Age-Structured Fish Populations. *Res Energy Econ* 35(2):113–134. Diekert (2012). Growth Overfishing: The Race to Fish Extends to the Dimension of Size, Environ Resource Econ DOI 10.1007/s10640-012-9542- 28/32

Fishing Quotas in Terms of Numbers vs. Biomass

Quaas/Requate/Ruckes/Skonhoft/Vestergaard/Voss (2013). Incentives for Optimal Management of Age-Structured Fish Populations. *Res Energy Econ* 35(2):113–134. 29/32

Fishing Quotas in Terms of Numbers vs. Biomass



Quaas/Requate/Ruckes/Skonhoft/Vestergaard/Voss (2013). Incentives for Optimal Management of Age-Structured Fish Populations. *Res Energy Econ* 35(2):113–134. 30/32

Questions and Issues

- Improve models: Take into account
 - uncertainties
 - feed-backs between ecological and economic dynamics (example: demand-side interactions in fisheries)
- How to meet multiple objectives? (example: stochastic viability analysis)
- Identifying trade-offs: Who gains, who loses? (example: workers in fishing industry)
- Develop innovative policy recommendations (example: fishing quotas in terms of numbers vs. biomass)

Ecological-economic models: Scale and Scope

Thébaud/Doyen/Innes/Lample/Macher/Mahévas/Mullon/Planque/Quaas/Smith/Vermard (2014). Building ecological-economic models and scenarios of marine resource systems: Workshop report. Marine Policy 43:382-386.