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Models inform multiple scales & modes of assessment
addressing multiple dimensions & levels of biodiversity

Change observation ' Scenario analysis
(monitoring) (projection)
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State of biodiversity




The challenge of the compositional dimension -
biodiversity really is diverse, and poorly known
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Two major sources of information on the state of
biodiversity, with complementary strengths

Remote sensing

e complete spatial coverage
* reasonable detection of ecosystem structure & function,
but not of biodiversity composition at species/gene level
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* direct detection of structure, function and composition
* but sparse, and uneven, spatial coverage

In situ (field based) observation




Therefore need integration through modelling, laying
the foundation for change observation & projection

Bl'ologlcal collection, Remotely mapped
observation & survey base environmental
data variables

Modelling spatial pattern Remotely observed
in the distribution of change in ecosystem
biodiversity state / intactness
Inferrlng change in the Projected pressures &
status of biodiversity responses: climate,
(past to present) Iand -use change etc

Projecting blodlverS|ty
persistence under
alternative scenarios

Assessment of other environmental — Evaluating potential policy
economic & social values & management interventions

<

In situ (field based) monitoring
Model evaluation & calibration




Spectrum of distributional modelling strategies
Ferrier & Guisan (2006) Journal of Applied Ecology

_ * interested in individual species of particular concern
{a? P * reasonable number of records per species
A
— 2

Individual species distribution
(niche) modelling

“Predict first, assemble later”
techniques

Simultaneous multi-response
modelling of multiple species

“Assemble first, predict later”
techniques

Macroecological modelling of collective
biodiversity properties (richness,
compositional turnover etc)

* interested in biodiversity as a whole
* huge number of species, each with few (or no) records




- e.g. modelling spatial turnover in biodiversity
composition using generalised dissimilarity modelling

Generalised
dissimilarity _ |
modelling (GDM)  Spatial pattern in

compositional turnover
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Remotely derived environmental variables:
climate, terrain, soils, geographic isolation etc

etc ...

Funded by Aust. Dept of Sustainability, Environment, Water, Population & Communities



Adding the temporal dimension — projecting
blodlver5|ty per5|stence under alternative scenarios

Bl'ologlcal collection, Remotely mapped
observation & survey base environmental
data variables

Modelling spatial pattern Remotely observed
in the distribution of change in ecosystem
biodiversity state / intactness
Inferrlng change in the Projected pressures &
status of biodiversity responses: climate,
(past to present) Iand -use change etc

Projecting blodlverS|ty
persistence under
alternative scenarios

Assessment of other environmental — Evaluating potential policy
economic & social values & management interventions

<

In situ (field based) monitoring
Model evaluation & calibration




A general framework for modelling persistence of
compositional diversity — three broad components

Persistence of overall biodiversity,
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Ferrier, S & Drielsma, M (2010) Diversity & Distributions 16: 386-492
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Modelling overall
hiodiversity persistence
as a function of the
predicted persistence of
all n surrogate entities

Modelling persistence of
each of # surrogate
entities as a function of
the entity's patential
occurrence at, and the
predicted future state of,
all mmlocations

Madelling future
habitat state at each
of mlocations as a
function of current
state, threats &
proposed action
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Flexibility in implementing these components ...

Flexibility in spatial
data structures

Fine-scale
raster

FPokwgonal
planning units

Flexibility in
surogates

Community
level

Discrete

Species

leve| ;
Continuous

Modelling future
habitat state

Modelling persistence of
individual surrogate
entities

Integrating persistence
across multiple entities

Einary function of inclusion (or
otherwise) in conservation areas

Simple multi-state function of
land use or management options

Complex function of interaction
between current state, threats &
management actions

Linkage to dynamic ecosystem
& socio-economic scenario
modelling

Summation {or count of number

Step-shaped function of total
of targets achieved)

area conserved

Continuous benefit-function of
area conserved (e Q. species-area

relationship) Static weighting of entities (for

richness, distinctiveness etc)

Continuous benefit-function of
effective habitat area (accounting
for spatial configuration etc)

Collective consideration of
relationship betwiesn
surrogates & unmeasured
biodiversity elements

WMetapopulation or metacommunity
modelling assuming static
distribution of entities

Metapopulation or metacommunity
modelling accounting for dynamic
shifts in distribution

Flexibility in refinement and sophistication of model components

Ferrier, S & Drielsma, M (2010) Diversity & Distributions 16: 386-492




... from simple pattern-based approaches ...

Modelling future Modelling persistence of Integrating persistence across

habitat state individual surrogate entities multiple entities
— N N

Proposed
rmanagement actions
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... to more complex process-based approaches,
e.g. metapopulation-capacity modelling ...
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... dynamic macroecological modelling of metacommunity

persistence (accounting for climate change)
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A common foundation for multiple forms of higher-level

assessment across multiple scales

[ Planning, decision-making and monitoring processes
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Landscape / regional scale applications — e.g. conservation
planning in north-east NSW forests in the 1990s ...

stablishment of a biological

' _conservation planning in
. north-cast New South-Wales |5/
# Oy

Phase 14
(1991 —.1995)
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.'Hl ‘ || vegetation |—> prioritisation
i j| communities (irreplaceability NagEifaier
| Protection analysis) & selection of
| targets new reserves
Timber resource
assessment

Ferrier, S, Pressey, R & Barrett, T (2000) Biological Conservation 93: 303-32



... Whole-landscape prioritisation of protective and
restorative management actions ...

Northern Rivers CMA Northern Rivers CMA
Biodiversity Forecasting Tool - Biodiversity Forecasting Tool
December 2005 ooy December 2005 ;
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... multi-objective environmental / social / economic
evaluation of alternative land-use scenarios ...
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... Site-based assessment of environmental stewardship
proposals W|th|n a whole Iandscape context
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National / continental scale applications — e.g. climate
change impact & vulnerability assessment ...

Potential change in plant
community composition

------

The implications of climate |
change for biodiversity e e B
conservation and the National

Reserve System: Final synthesis Representativeness of

Michael Dunlop, David W. Hilbert, Simon Ferrier, Alan House, Adam reserve SySt_em (2070
Liedloff, Suzanne M. Prober, Anita Smyth, Tara G. Martin, Tom Harwood, A1B scenario)
Kristen J. Williams, Cameron Fletcher, and Helen Murphy.
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... also informing policy & planning at state (provincial)

scale...

CLIMATE ADAPTATION FLAGSHIP

Queensland’s biodiversity
under climate change:

impacts and adaptation — synthesis report

Augt 12

A report prepared for the Queensland Government, Brisbane

g Helen T Murphy, Simon Ferrier, Russell M Wise,
loff, Timothy D Skew Harw i , Richard 1 Williams, K loehnk,
p, Mark Stafford Smith, Craig James and Tre:

Y) Queensland
Government

07
-0
24.08
04
03
| ERRCH
| ENE
Regonsl Plan Frojecty
L) Lobme

i

Regonal Plan Frojects
) b

Novel biotically scaled environments
Mirvmum precicted dissimilaty

et e patential Satuiw

compositon of oach cell and

he current compasiton of ol

onis on the cortinenl

Context: Australia




... and recently applied at much finer spatial resolution
to identify potential climate refugia for biodiversity ...

: {}J'CICARF = JAMES COOK
AP b * UNIVERSITY

AUSTRALIA

Climate change refugia for terrestrial biodiversity
Final Report

April E. Reside, Jeremy VanDerWal, Ben L. Phillips, Luke P. Shoo,
Dan F. Rosauer, Barbara J. Anderson, Justin A. Welbergen,

Craig Moritz, Simon Ferrier, Thomas D. Harwood,

Kristen J. Williams, Brendan Mackey, Sonia Hugh

and Stephen E. Williams
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... employing a new generation of fine-scaled
environmental variables & high-performance computing

0.5° GCM change grids (1990-Future)
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... CSIRO Australian National Outlook project — integrated assessment of

natural-resource use scenarios (land, water, energy, ecosystem services)
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Global scale applications — e.g. proof-of-concept assessment

of protected areas for 5t World Parks Congress (2003) ...
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Mapping More of Terrestrial
Biodiversity for Global
Conservation Assessment
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... major new opportunities have opened up over past
10 years through various global initiatives & activities ...

THE GLOBAL EARTH OBSERVATION
SYSTEM OF SYSTEMS
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A recent proof-of-concept example — based on modelling
of all GBIF data for ferns (>1.3 million records for >10,000 species)

Fern species records (GBIF) Base environment (WorldClim etc)
e : N — | e
o : . i ; S — g

Climate change (IPCC etc)

| .
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Modelled retention of compositional diversity
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Thereby able to report change in retention of compositional
diversity at any required level of spatial aggregation
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6t" World Parks Congress (Nov 2014) serving as a catalyst
for first full implementation of this approach
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WORLD PARKS

GROUP ON
CONGRESS CSIRO EARTH OBSERVATIONS
Biological collection, Remotely mapped
observation & survey base environmental
data variables
Modelling spatial pattern Remotely observed
in the distribution of change in ecosystem
biodiversity state / intactness
| |

Inferring change in the rojected pressures &
status of biodiversity responses: climate,
(past to present) land-use change etc
| | |
Projecting biodiversity
persistence under
alternative scenarios I B-

Assessment of other environmental — Evaluating potential policy Modelling human impacts on biodiversity
economic & social values & management interventions
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6th World Parks Congress (Nov 2014) serving as a catalyst
for first full implementation of this approach

e il €0 srovron

CONGRESS CSIRO EARTH OBSERVATIONS

» How adequately does the world’s protected-area system represent
current patterns of compositional diversity across a wide range of
highly diverse biological groups?

= How is this level of representation expected to change given
projected velocities of climate change?

= Which existing protected areas are most vulnerable to turnover
and/or loss of compositional diversity under climate change?

= Where are the gaps in existing protected-area coverage that could be
most critical to maximising overall whole-landscape retention of
compositional diversity, in the face of ongoing climate and land-use
change?

_



The challenge ahead - integration & harmonisation across
scales, biodiversity dimensions, & assessment modes

species

ecosystems

State of biodiversity

Change observation Scenario analysis
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The challenge ahead - integration & harmonisation across
scales, biodiversity dimensions, & assessment modes
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Time to model
all life on Earth

To help transform our understanding of the biosphere, ecologists — like climate
scientists — should simulate whole ecosystems, argue Drew Purves and colleagues.
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oauldapﬁyaGEMmA&xln savanmas, for
instance, to model the total biomass of all the
plants, the grazers that feed on the plants, the
carnivares that feed on the grazers and so on.
O tirne, the flows of energy and nutrients
could be mapped between them. All of the
oeganisms would be grouped not by species,
butaccording to a few key traits suchas »
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The challenge ahead - integration & harmonisation across
scales, biodiversity dimensions, & assessment modes
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