

PBL Netherlands Environmental Assessment Agency

Questions of ultimate urgency

biodiversity & ecosystem services

in socioeconomic scenarios

Ben ten Brink, PBL 21-10-2013, Paris

PBL Netherlands Environmental Assessment Agency

- 1. The big picture: 10,000 BC up to 2050
- 2. Global change
- 3. Approaching local & planetary limits?
- 4. Questions of ultimate urgence

The big picture: human development 10,000 BC to 2000 PBL Netherlands Env AD

PBL Netherlands Environmental

Historical population estimates over the Holocene (10,000 B.C - 2,000 A.D.)

Land use in the past

3000 BC

Competing claims on land & assets

2010 Land use per ecosystem type Million km²

Legend: 5 mln km²

Competing claims on land & assets (baseline scenario)

Legend: 5 mln km²

Competing claims on land & assets (baseline scenario)

Legend:

Zooming in: South East Asia 1970

PBL Netherlands Environmental Assessment Agency

Mean species abundance (as % of original) in 1970

Zooming in: South East Asia 2000

PBL Netherlands Environmental Assessment Agency

Mean species abundance (as % of original) in 2000

Zooming in: South East Asia 2030

PBL Netherlands Environmental Assessment Agency

Mean species abundance (as % of original) in 2030

Man transforms lanscape since 8000 BP Why?

Forest

Land degradation

Grassland

In.Idq

Concept

Bron: PBL, 2009

Degradation... or progress?

x 100

Freshwater

Forest

Land degradation

Grassland

In.Idq

Concept

Bron: PBL, 2009

Degradation... or progress?

Forest

Function

change

Land degradation

Grassland

Concept

In general we:

de-vegetate

de-carbonate

de-hydrate

de-speciate

de-moderate

If badly managed:

de-plete

de-teriorate

Degraded?

PBL Netherlands Environmental Assessment Agency

Greenness current/potential (ndvi)

Masked Normalized Difference Vegetation Index (NDVI) ratio

PBL Netherlands Environmental Assessment Agency

Soil organic Carbon

Modelled potential soil organic matter

PBL Netherlands Environmental Assessment Agency

Soil organic Carbon

Modelled current soil organic matter

PBL Netherlands Environmental Assessment Agency

Soil organic Carbon

Modelled change soil organic matter

PBL Netherlands Environmental Assessment Agency

Carbon sequestration & climate

Biosphere C emissions:

Pre-1850 : 320 Gt C
<u>1850-1998</u>: <u>136 Gt C</u> +/- <u>55</u>
Total : **456** Gt C (401-511) 4 Gt C = 1 ppm CO₂

Fossil C emissions 1850-1998 :

270 *G*† *C* +/- 30 (~68 ppm)

Source: Lal (2004, 2008)

PBL Netherlands Environmental Assessment Agency

Productivity change 1982-2010 (% npp/yr)

tNPP as percentage of NPP (percentage per year)

PBL Netherlands Environmental Assessment Agency

Productivity change 1982-2010 climate corrected (% npp/yr)

nNPP as percentage of NPP (percentage per year)

PBL Netherlands Environmental Assessment Agency

Floods

Once in 30-year flood

Affected GDP per year

Affected people per year

PBL Netherlands Environmental Assessment Agency

Floods

Once in 30-year flood

Affected GDP per year

Affected people per year

Planetary bounderies?

to expected socioeconomic development

PBL Netherlands Environmental Assessment Agency

LEITAP – TIMER – IMAGE – GLOBIO - EcoOcean models

PBL Netherlands Environmental Assessment Agency

Key policy question: How far can we stretch global ecosystem transformation?

PBL Netherlands Environmental Assessment Agency

Ben ten Brink , Belmont vs 21-10-2013

PBL Netherlands Environmental Assessment Agency

Ben ten Brink , Belmont vs 21-10-2013

PBL Netherlands Environmental Assessment Agency

PBL Netherlands Environmental Assessment Agency

Where the land is greener

PBL Netherlands Environmental Assessment Agency

Ben ten Brink , Belmont vs 21-10-2013

Option trade offs

PBL Netherlands Environmental Assessment Agency

Change in global biodiversity per option compared to baseline scenario

Prevented MSA loss, 2000 - 2050

Change in global biodiversity of options expanding protected areas and reducing deforestation by 2030

60

Option trade offs

PBL Netherlands Environmental Assessment Agency

Change in global biodiversity per option compared to baseline scenario

Prevented MSA loss, 2000 – 2050

Options included in combination

Change in global biodiversity of options expanding protected areas and reducing deforestation by 2030

Option trade offs

PBL Netherlands Environmental Assessment Agency

Ben ten Brink SEBI CT 30-11-2010 Functioning ecosystems in the heart of Rio-conventions & MDGs -> food- water-, energy-security & physical safety

Consequences goods for services

PBL Netherlands Environmental Assessment Agency

	crops	Water basin		National Park	
		Shrimp farm		golf	
	timber plantation	cattle	road		city
			Energy crop		, ,

'We parcelate the world' Swap services for goods

Making multiple maps function change

Restoration scenarios SOC increase over time

PBL Netherlands Environmental Assessment Agency

Legend: sequestration > 0.25 Mg/ha total dSOC > 7.5 Mg/ha

Source: WUR, WOCAT

Future scenarios

Key process

How do we measure biodivers is IPBL Netherlands Environmental nomogenisation

We also convert, plough, burn, log, hunt and pollute down

Global biodiversity loss: 2 Pol Netherlands Terrion MSA)

Share per cause

Datum: 20-dec-2005

PBL Netherlands Environmental Assessment Agency

Rethinking global biodiversity strategies

Sector-based options to reduce biodiversity loss

as a contribution to TEEB

A cooperation between PBL, LEI and UBC

Ben ten Brink PBL, 20-10-2010

Conclusions

- By 2050, global biodiversity further declines from 70%->60%
- 2. many sub-systems to lower levels
- 3. individual options reduce loss a little
- 4. a combination of options halves the loss, and
- 5. has **positive** effects on climate change, water quality, and food availability
- 6. more options are possible -> further reduce

-PBL Netherlands Environmental Assessment Agency

Governmental institute Independent

Contribute to:

-IPCC

-MA

-GBO2

-GEO 1, 3,4

-FAO outlook

-OECD outlook 2008

-TEEB1

-Contribution to TEEB -> Bio-physical effects Cost of Policy Action

-...

PBL Netherlands Environmental Assessment Agency

Global Biodiversity Outlook 3 concluded:

- 1. 2010-target not achieved at any level
- 2. loss proceeds at unchanged pace
- 3. risk at passing tipping points

Recommends measures on:

- agricultural efficiency
- forestry
- climate mitigation
- fisheries
- consumption

...........

How much? Do they halt loss?

8 single options:

- 1. Closing yield gap (efficiency)
- 2. Reducing post harvest loss (50%)
- 3. Diet change (less meat no meat)
- 4. Climate mitigation & biofuels (max + 2°C)
- 5. Wood plantations + RIL
- 6. Reduced deforestation
- 7. Protected areas (20%-50% per biome)
- 8. Restoring marine stocks & aquaculture

Compared to no new policie scenario (BAU)

+ Option package (ambitious but feasible)

Indicator: mean species abunded PRL Netherlands Environmental

Mean Species Abundance (MSA)

MSA A landscape view

plantation

istine forest

oggin

ctive |

Forest

50%

0%

MSA

Grassland

Baseline scenario Marine PPI Netherlande Environmental Olicies

Characteristics 2000-> 2050:

- 1.5 x global population1.6 x food productivity1.6 x fish demand1.4 x wood demand
- 2.5 x global energy use3 x income per person

Kyoto implemented

Draft

Sources: OECD, IEA, FAO,

Cork et al,

PBL Netherlands Environmental Assessment Agency

Biodiversity in 1970 (MSA)

PBL Netherlands Environmental Assessment Agency

Biodiversity in 2000 (MSA)

PBL Netherlands Environmental Assessment Agency

Biodiversity in 2010 (MSA)

PBL Netherlands Environmental Assessment Agency

Biodiversity in 2030 (MSA)

PBL Netherlands Environmental Assessment Agency

Biodiversity in 2050 (MSA)

Biodiversity loss continues Assessment Agency

Global MSA in baseline scenario

We will be synthesizing a <u>wide variety</u> of scenarios and models as the basis of our analysis. Some of these will be new analyses undertaken for the GBO4.

Types of models and scenarios used:

- Extrapolations from current trends statistical
- Extrapolations from current trends with hypotheses or probablistic
- Socio-economic storylines e.g. MA, GEO, IPCC storylines.
- Storylines + policy options e.g., Rethinking scenarios
- Backcasting analyses: working backwards from sustainable endpoints e.g., Rio+20 scenarios

'Backcasting' as an innovative way to explore alternative pathways for reaching a greed upon objectives

'Backcasting' as an innovative way to explore alternative pathways for reaching a greed portuge of the pathways for reaching a greed portuge of the pathways for reaching a greed of the pathways for the pathways for reaching a greed of the pathways for the pathwa

Backcasting analysis, working back from a sustainable end point to determine actions for today Assessment Agency
Roads from Rio+20

PBL Netherlands Environmental

Pathways to achieve global sustainability goals by 2050

PBL Netherlands Environmental Assessment Agency

Roads from Rio+20

sustainability goals by 2050

Reduce nitrogen emmissions

Mitigate climate change

Restore abandoned agricultural lands

Reduce consumption and waste

Increase agricultural productivity

Global Technology pathway

Decentralised Solutions pathway

Consumption Change pathway

Development & biodiversity Intersety related

3. Why is it important? 3. PBL Netherlands Environmental Assessment Agency

Avoid a lose-lose

PBL Netherlands Environmental Assessment Agency

beauty, recreation, education cultural identity agri- disease regulation ffsh meat pollination ffoood, filber, ffuelwood, freshwater C-seq, soil formation, flood control soni fértility warepperfication, original deterisivatede nutrientreeyenligg

Biodiversity Futures for the 21st Century

Global Biodiversity Outlook 3

HABITAT LOSS

Protected areas for preserving biodiversity

50% of each key ecosystem

Not included

Species extinction

Where the land is greener

a Target 12 (and beyond)

Comparing multiple indicies of impacts using the Rio+20 socio-economic scenarios

Note: PREDICTS results provisional!

Biodiversity protection, climate mitigation and improving

Assessment Agency

Global decarbonisation rate

Decarbonisation

Zooming in: Grasslands - 2000

PBL Netherlands Environmental Assessment Agency

Biodiversity of grasslands in 2000 (Mean Species Abundance)

Source: MNP/OECD 2007

Zooming in: Grasslands baseline - 205 FBI Netherlands Environmental Assessment Agency

Biodiversity of grasslands in 2050 (Mean Species Abundance)

Zooming in: Temperate & tropica PPL Netherland Environmental 2000

Biodiversity of forests 2000 (Mean Species Abundance)

Zooming in: Temperate & tropica PBL Netherland Environ hontal seline -2050

Biodiversity of forests 2050 (Mean Species Abundance)

Source: MNP/OECD 2007

Global land use and natural area in baseline scenario

(Earth total: 130 million km²

10-2010

8 options

PBL Netherlands Environmental Assessment Agency

- 1. Closing yield gap (production efficiency)
- 2. Reducing food chain losses
- 3. Diet: Less meat (healthy, none)
- 4. Climate mitigation & biofuels (max + 2°C)
- 5. Improving forest management (wood plantations + RLEffects in Prevented Loss (Pl
- 6. Reduced deforestation
- 7. Expanding protected areas (20%-50% per biome)
- 8. Restoring marine fish stocks & aquaculture
 - + Option combination (ambitious but feasible)

Is + kuEffects in Prevented Loss (Pl of baseline loss (10%)

Overview prevented loss per optication of the second secon

Change in global biodiversity per option compared to baseline scenario

Prevented MSA loss, 2000 – 2050

Basic optionsSensitivity variants

Change in global biodiversity of options expanding protected areas and reducing deforestation by 2030

Option combination

PBL Netherlands Environmental Assessment Agency

Change in global biodiversity per option compared to baseline scenario

Prevented MSA loss, 2000 - 2050

Options included in combination

Change in global biodiversity of options expanding protected areas and reducing deforestation by 2030

Option combination: halving the Report of the Angent State of the

Prevented global MSA loss compared to baseline scenario, 2000 – 2050

Combination of options

Option combination: natural

Change in natural area and wilderness compared to baseline scenario, 2050

Global greenhouse gas emissions, concentration and temperature change

Temperature change

Change in land prices and food consumption compared to baseline scenario, 2030

Stepwise introduction of options; Global land prices

Conclusions

PBL Netherlands Environmental Assessment Agency

- 1. Ambitious option package can half loss by 2050, but not halt
- 2. Autonomous socio-economic growth is huge:
 - PA alone not sufficient to significantly reduce loss
 - Integrated sector-based approach required
- 3. Productivity increase is key (if not..)
- 4. Combine land demanding with land relieving options (price effects)

(PA, plantations, bio fuels, REDD) (productivity, reduce food loss, diet)

Align with climate change, MDGs, food & wood & energy policies

Greenness change Current/Potential method B

Masked Normalized Difference Vegetation Index (NDVI) ratio

Global biodiversity loss: 12 1 Nother and Environment & wilderness

Change in natural area and wilderness in baseline scenario, 2000 - 2050

Natural area per region

MSA per biome in baseline scenario

MSA of usable biomes per region in baseline scenario

Regional yields

2000

2050

- Baseline scenario
- Closing the yield gap

Range from OECD, FAO and IAASTD baseline scenarios

Timber and pulp demand Structure Convironmental

• Global wood demand increase from 2.5 -> 3.5 billion m³/yr

Plantations produce 40% demand by 2050 + RIL

Grafieknummer: VIB-Option 4 SFM Forest-areas Datum: 09-apr-2010

Concept

Biodiversity loss (msa)

Eighbiodiversity footput Pt Netherlands Environmental Assessment Agency

Conclusions

- 1. Ambitious but feasible option package can half the rate of loss by 2050
- 2. But not halt the loss
- 3. Sector-based policies far more effective then PA alone
- 4. Directly effective: diet change, closing yield gap, PA, RIL and lowering catch
- 5. Long term effective: forest plantations
- 6. Biofuels & unguided trade liberalisation would lead to net loss
- 7. Options in multiple sectors behave in cumulative way
- 8. Options in one sector behave in a multiplicative way $(\frac{1}{2} \times \frac{1}{2} = \frac{1}{4})$
- 9. Efficiency increase is key
- 10. Combine land demanding with land relieving options (price effects)
- 11. Climate policies beneficial, without biofuels
- 12 Alian with climate change MDGs food & wood & energy policies

Towards a smart option PBL Netherlands Environmental

- 1. Technical high ambitious potential
- 2. Policy oriented package (survey)

wunder development

Combine:

- Carbon-rich area protection (forest, grassland and peat)
- with biofuels on degraded grounds plus waste utilization
- with protection of EGS in brittle ecosystems (sub-humid and mineral soils)
- with effective protection of 25% per eco-region incl. biodiv hot spots
- with eco-efficient production increase in agriculture & forestry & aquaculture in current under performing production systems
- as a means to alleviate poverty
- With micro-finance, capacity building, law and law inforcement, technology transfer, better redistribution of food,
- strong efficiency increas in energy and water use
- temporary reduction of fisheries
- guided trade libealization
- taxation on land conversion and meat
- Fair distribution of cost and benefits of global public goods (biodiv) by GDM
- Introduction of healthy diet consumpion patterns

•
REDD: limited match with hot spots

PBL Netherlands Environmental Assessment Agency

Causes and what can we do about it? Competing claims

Potential losses from growing demand of commodities

Growing habitat loss from:

- food, feed, forestry plantations, bio-fuel,
- Carbon plantation, built up area

Growing quality loss from

- climate change, eutrophication,
- exploiting fish and wood in natural ecosystems
- ongoing land degradation

Options

PBL Netherlands Environmental Assessment Agency

Baseline BAU future development

- 1. Food production efficiency
 - 1. higher increase than BAU scenario
 - 2. Failure to increase future yields as in BAU scenario
- 2. Reducing post-harvest loss
- 3. Diet change
 - 1. Reduction in meat consumption
 - 2. Increase in meat consumption
- 4. Timber production efficiency
 - 1. Efficiency increase through forest plantation
 - 2. No forest plantation
- 5. REDD protect high-carbon forest areas & reduced impact techniques
- 6. Climate objective in alternative 450 ppm scenarios
 - 1. by 2nd generation bio fuels
 - 2. by food crops
- 7. Expansion of protected areas incl. substitution effects outside PAs

Additional:

- 1. Liberalization of trade in agricultural products
- 2. Aquaculture replacing partly marine capture fisheries (needs UBC)

Land use in 2000 arable land + extensive grazing

1. A.

SBL Wetherlands Environment: Assessment Agency

+ 10% protected area per biome

Land use in 2050 arable land + extensive grazing

1.000

SBL Wetherlands Environment Assessment Agency

1.8 x Δ production

Land use in 2050 (arable land + extensive grazing to rest Netherlands Environmental Assessment Agency

Zooming in: Europ

PBL Netherlands Environmental Assessment Agency

e

Historical development of biodiversity - Europe

