

Interactions Between the Stratosphere and Troposphere

A personal perspective

Scott Osprey

The Wave-Driven Circulation

GOTHAM Summer School

Global structure of Temperature and Wind

Fleming et al., Adv. Space Res., 1990

20 September 2017

Support for the Brewer Dobson Circulation: Ozone

GOTHAM Summer School

Small Waves make "Big Waves"

Both small and large scale waves set up the global Brewer-Dobson circulation in the atmosphere

Atmospheric waves generated from air flow over an island

GOTHAM Summer School

Northern Hemisphere Wintertime Interactions

GOTHAM Summer School

The North Atlantic Oscillation

GOTHAM Summer School

A Strongly Negative NAO!

GOTHAM Summer School

Stratospheric Sudden Warmings and

impacts on the troposphere

- Wintertime stratosphere can undergo large and rapid changes known as Sudden Warmings.
- These are characterised by dramatic changes in high-latitude wind and temperature.
- In the troposphere they have been associated with a change in path of North-Atlantic weather systems.

20 September 2017

Accumulated effects of Tropospheric waves linked with PNJ change

Polvani & Waugh, J. Clim., 2004

Osprey et al., JAS, 2010

GOTHAM Summer School

New Metrics for Diagnosing Teleconnection Sensitivity of Climate Variability

Causal Effects Networks

X Y C) Z X $X \rightarrow Z \rightarrow Y$ Y $X \rightarrow Z \rightarrow Y$ Y

Kretschmer et al, 2016

Complex Network Metrics

Susheel Adamuselli

GOTHAM Summer School

The Tropical Stratosphere

GOTHAM Summer School

Quasi-Biennial Oscillation

20 September 2017

How does the QBO work?

Holton and Lindzen (1972) proposed a model of the QBO based on vertically propagating waves. The mechanism was further explained by Plumb (1977).

Equatorially trapped Kelvin waves provide westerly momentum and Rossby-gravity waves provide easterly momentum to produce the QBO oscillation.

Wavy blue and red lines indicate the penetration of westward and eastward waves

GOTHAM Summer School

Observed QBO teleconnections to the surface

20 September 2017

QBO - Surface & high-latitude Impact in models

- Eastward/westward QBO linked with poleward/equatorward shift in Atlantic jet-stream in observations
- Seasonal and decadal forecast models kind of reproduce sign of teleconnection, but it is generally very weak
- Scope for **significant improvement** in seasonalinterannual forecasting.

Scaife et al, 2013

-3.6 -2.4 1.2 0 1.2 2.4 3.6

MiKlip

GloSea5

-3.6 -2.4 1.2 0 1.2 2.4 3.

ECMWF

GOTHAM Summer School

Challenges to Seasonal Forecasting: QBO disruption

- QBO was disrupted during 2016
- Extratropical waves responsible for rapid development of westward wind jet within eastward QBO phase
- Seasonal forecasting centres apparently did not anticipate the disruption in advance
- The lack of predictability of the disruption has significant implications for the possible limits of future seasonal forecasts

Better resolved stratospheres improve high latitudes in CHFP models

Stratosphere representation in CHFP models (incl. QBO) and ENSO pathways leads to improved responses at high latitudes

Butler et al, QJRMS, 2016

GOTHAM Summer School

QBO Comparison: Models and Reanalyses

- Comparison of GCMs (CMIP5 & CCMVal-2) and reanalysis datasets.
- Peak QBO amplitude placed too high (solid lines, opposite) compared to mean reanalyses (dotted)
- Mean QBO amplitude asymmetry (east/west phases) well captured.
- Crucially GCMs do not penetrate to the **lowermost stratosphere** and are **too narrow** there
- How do these biases translate to tropospheric teleconnections and to predictability (i.e. directly relevant to the Near-Term Climate Prediction Grand Challenge)

Schenzinger et al, Geosci. Model Dev., 2017

GOTHAM Summer School

The Madden-Julian Oscillation

GOTHAM Summer School

QBO and Madden-Julian Oscillation

Zonal mean zonal wind 50hPa (10N-10S)

Courtesy of Harry Hendon http://www.bom.gov.au/climate/mjo/

Amp(t)= sqrt(rmm1²+rmm2²) Filter with 90 d running mean

Strongly correlated during austral summer: (sig test takes into account auto correlation of QBO index)

Implies predictions of MJO should be better during EQBO, based on previous studies that show predictive skill of MJO varies with MJO amplitude

MJO prediction skill: BoM model

MJO is better predicted during EQBO winter!

GOTHAM Summer School

MJO prediction skill: 6 models

All 6 models consistently show that MJO is better predicted during EQBO winter!

GOTHAM Summer School

Solar Cycle

Volcanoes work too...

GOTHAM Summer School

Solar Impact on Climate: top-down vs

bottom-up mechanisms

GOTHAM Summer School

Solar & QBO Impacts

After Van Loon & Labitzke, 1994

20 September 2017

Solar Impacts on global temperature

GOTHAM Summer School

Other Mechanisms for Troposphere-Stratosphere Coupling

- Non-local balanced response to a given stratospheric torque
 - Downward control (Haynes et al. 1991)
 - PV inversion (Ambaum & Hoskins 2002 and others)
- Wave behavior determined by given zonal-mean flow via index of refraction (e.g. Charney & Drazin 1961, Matsuno 1970)
 - Dissipation at critical layer (e.g. McIntyre & Palmer 1983)
 - Reflection (e.g. Perlwitz & Harnik 2003, 2004, Shaw et al. 2010)
- Synoptic scale wave feedbacks and impacts from the stratosphere (Lorenz and Hartmann 2001, 2003, Simpson et al. 2009, Thompson & Birner 2012)

Wave driven circulation above the troposphere

