

USING CAUSAL DISCOVERY ALGORITHMS TO ANALYZE AND PREDICT THE STRATOSPHERIC POLAR VORTEX

Marlene Kretschmer, 21.9.2017

Dim Coumou, Jakob Runge, Jonathan Donges

THE STRATOSPHERIC POLAR VORTEX

Strong Polar Vortex:

- Fast winds
- Strong, circumpolar flow
- à Mild winters/+A0

Weak Polar Vortex:

- Slow winds
- Weak, wavy flow
- à Cold winters/-AO

TROPOSPHERE - STRATOSPHERE - TROPOSPHERE COUPLING

OUTLOOK

PARTI

Causal effect networks for hypothesis testing

(Arctic) drivers of the polar vortex

PART II

Response-guided causal precursor detection for predictions

Common tasks when studying teleconnections

Hypothesis testing with Causal Effect Networks

Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation	
MARLENE KRETSCHMER	
Potsdam Institute for Climate Impact Research, and Department of Mathematics, University of Potsdam, Potsdam, Germany	
DIM COUMOU	
Possdam Institute for Climate Impact Research, Possdam, Germany	
JONATHAN F. DONGES	
Potsdam Institute for Climate Impact Research, Potsdam, Germany, and Stockholm Resilience Centre, Stockholm, Sweden	
JAKOB RUNGE	
Potsdam Institute for Climate Impact Research, Potsdam, and Department of Physics, Humboldt University Berlin, Berlin, Germany	
	Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation MARLENE KRETSCHMER Potsdam Institute for Climate Impact Research, and Department of Mathematics, University of Potsdam, Potsdam, Germany DIM COUMOU Potsdam Institute for Climate Impact Research, Potsdam, Germany JONATHAN F. DONGES Potsdam Institute for Climate Impact Research, Potsdam, Germany, and Stockholm Resilience Centre, Stockholm, Sweden JAKOB RUNGE Potsdam Institute for Climate Impact Research, Potsdam, and Department of Physics, Humboldt University Berlin, Berlin, Germany

HYPOTHESIS: ARCTIC DRIVERS OF POLAR VORTEX VARIABILITY

DATA SELECTION: CHOOSE VARIABLES FOR EACH "ACTOR"

Abbreviation	Actor	Variable/Unit	Region (Level)
BK-SIC	Barents Kara sea ice	Sea ice area fraction	70 °- 80°N, 30°- 105°E
EA-snow	Eurasia snow cover	snow covered area fraction	40° - 80°N, 30°-180°E
Sib-SLP	Siberian High	Sea level pressure	40° - 65°N, 85° - 120°E
Ural-SLP	Ural Mountains sea level pressure	Sea level pressure	45° - 70°N, 40° - 85°E
v-flux	Vertical wave propagation	Pole-ward eddy heat flux v*T*	45° - 75°N (100 mb)
PoV	Polar Vortex	Geopotential height in m	65° - 90°N (10 - 100 mb)
AO	Arctic Oscillation Index	Geopotential height	20° - 90°N (1000 mb)

PROBLEMS WITH CROSS-CORRELATION

Y www.yhallowanallo

Assume X_{t-1} and Y_t correlate strongly: e.g. $\rho(X_{t-1}, Y_t) = 0.7$

Does this mean X causes Y?

CAUSAL EFFECT NETWORK (CEN)

Step 1 Find causal links Estimate the parent processes for each actor: Exclude spurious correlations due to autocorrelation, common drivers, indirect links

Step 2 Estimate link strength

Calculate the link strength via multiple linear regression

STEP 1: CALCULATE THE PARENT PROCESSES FOR POV

Which actors are significantly correlated with the PoV index?

 $\mathbf{P_0} = \{v-flux_{t-1}, PoV_{t-1}, Ural-SLP_{t-1}, Ural-SLP_{t-2}, AO_{t-1}, EA-snow_{t-1}\}$

<u>Test Hypothesis</u> Does Eurasian snow cover influence the polar vortex with a lag of one month?

$$\sim \rho(\text{EA-snow}_{t-1}, \text{PoV}_t) = -0.3$$

$$\sim \rho(\text{EA-snow}_{t-1}, \text{PoV}_t \mid \text{v-flux}_{t-1}) = -0.1$$

 $\rho(X, Y \mid Z) = partial correlation of X and Y given Z$

(**a** < 0.01)

(**a** > 0.01)

EA-snow and PoV are conditionally independent

 $\begin{aligned} & \textbf{STEP 1: CALCULATE THE PARENT PROCESSES FOR PoV} \\ P_0 &= \{v\text{-}flux_{t-1}, \text{PoV}_{t-1}, \text{Ural-SLP}_{t-1}, \text{Ural-SLP}_{t-2}, \text{AO}_{t-1}, \text{EA-snow}_{t-1}\} \\ P_1 &= [v\text{-}flux_{t-1}], \text{PoV}_{t-1}, \text{Ural-SLP}_{t-1}\} \\ & \underline{\text{Test Hypothesis}} \\ & \text{Does poleward heat-flux influence the polar vortex with a lag of one month?} \end{aligned}$

$rac{r}{r} ho(v-flux_{t-1}, PoV_t) = -0.7$	(a < 0.01)
$\mathbf{V} \rho(v-flux_{t-1}, PoV_t Ural-SLP_{t-1}) = -0.6$	(a < 0.01)
$rac{1}{r} ho(v-flux_{t-1}, PoV_t PoV_{t-1}) = -0.6$	(a < 0.01)
$\mathbf{V} \rho(v-flux_{t-1}, PoV_t PoV_{t-1}, Ural-SLP_{t-1}) = -0.6$	(a < 0.01)
The flux and Doll are conditionally dependent	

v-flux and PoV are conditionally dependent

CEN ALGORITHM

Step 1 Find causal links $\begin{aligned} & \textbf{P}_{0} = \{ v - flux_{t-1}, \ PoV_{t-1}, \ Ural - SLP_{t-1}, \ Ural - SLP_{t-2}, \ AO_{t-1}, \ EA - snow_{t-1} \} \\ & \textbf{P}_{1} = \{ v - flux_{t-1}, \ PoV_{t-1}, \ Ural - SLP_{t-1} \} \\ & \boldsymbol{\mathcal{P}}_{PoV} = \{ v - flux_{t-1}, \ PoV_{t-1}, \ Ural - SLP_{t-1} \} \end{aligned}$

Step 2 Estimate link strength

```
Linear regression:

PoV_{t}^{*} = \beta_{0} + \beta_{1}v-flux_{t-1}^{*} + \beta_{2}Ural-SLP_{t-1}^{*} + \beta_{3}PoV_{t-1}^{*} + \epsilon

(We account for multiple-testing)
```

Repeat Step 1+2 for each actor

$$m{\mathcal{P}}=\{m{\mathcal{P}}_{\mathsf{AO}},m{\mathcal{P}}_{\mathsf{BK-SIC}},m{\mathcal{P}}_{\mathsf{EA-snow}},m{\mathcal{P}}_{\mathsf{v-flux}},m{\mathcal{P}}_{\mathsf{PoV}},m{\mathcal{P}}_{\mathsf{Sib-SLP}},m{\mathcal{P}}_{\mathsf{Ural-SLP}}\}$$

RESULTS: CAUSAL EFFECT NETWORK

- CEN constructed for winter (DJF)
- Troposphere-Stratosphere coupling robustly found
- Low sea-ice conditions in fall can weaken polar vortex in winter
- Role of snow cover less robust

Part II

Response-guided causal precursor detection for predictions

MOTIVATION: LIMITATIONS OF CEN

- CEN outcome depends on included actors
- Which processes and hypothesis should be considered?
- Over which regions should the indices be calculated? e.g. which ENSO index?

DATA AND PARAMETER SELECTION

- <u>Response variable</u>: Polar Vortex index in winter (NDJFM)
- Potential drivers: SST, SLP, GPH 500mb, v*T* 100mb, uwind 50mb from 20°S – 90°N
- Calculate anomalies, remove trends
- Half-monthly time-series
- Maximum lag = 4 months (8 time-steps)

0.2 0.4 0.6

DETECTION OF CAUSAL DRIVERS

After we apply CEN-algorithm, from the 471 potential drivers only <u>3 causal precursors</u> remain

Region 1: PoV (lag-1) Region 2: v*T* at 100hPa (lag-1) Region 3: v*T* at 100hPa (lag-1)

Linear Regression model:

 $\mathbf{PoV}_{t} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{PoV}_{t-1} + \boldsymbol{\beta}_{2} \mathbf{Region2}_{t-1} + \boldsymbol{\beta}_{3} \mathbf{Region3}_{t-1} + \boldsymbol{\epsilon}$

EVALUATION OF DETECTION SCHEME AND REGRESSION MODEL

Do RG-CPD for training data and apply to independent test data:

- Robust precursors
- No overfitting of model

RESPONSE-GUIDED CAUSAL PRECURSOR DETECTION (RG-CPD)

1) Detect regions in multi-variate data which correlate positively (red) or negatively (blue) with the response variable at different lags

2) Take area-weighted averages of all regions creating time-series of precursors.

3) A causality test removes all non-causal links due to common drivers, auto-correlation or indirect links.

CONCLUSION

PART I

Causal effect networks for hypothesis testing

PART II

Response-guided causal precursor detection for predictions

- Correlation analysis is limited in interpretability
- CEN-algorithm is multi-variate approach to overcome some limitations
- identifies and quantifies causal relationships
- Vseful for hypothesis testing
- RG-CPD algorithm objectively detects causal precursors of a response variable
- Avoids overfitting of linear models and is therefore also suitable for predictions
- Restriction to longer lead-times can be used for earlywarning systems

PoV

SURFACE TEMPERATURE RESPONSE

Strong Polar Vortex

Weak Polar Vortex

Mild winters, +AO

kretschmer@pik-potsdam.de

kretschmer@pik-potsdam.de

PIK

LONG LEAD-LAG PREDICTION SKILL

Receiver-operating-characteristic (ROC) false-positive-rate vs. true-positive-rate for different percentiles

- 64% of weak SPV states are predicted by our model with a false-alarm-rate of ~4% (odds-ratio = 42.3)
- For longer lead-times, models still correctly predict 42% (16-30 days ahead), 22% (31-45 days ahead) and 14% (46-60 days ahead) with associated odds-ratios of 10.3, 3 and 1.5.

