

Causal inference and complex network methods for the geosciences

Jakob Runge

September 28, 2017

https://jakobrunge.github.io/tigramite/

New research group

Goal

Goal

Goal

Goal

Learn causal interactions from time series of complex dynamical systems

1. How to formulate causal inference for complex dynamical systems?

Goal

- 1. How to formulate causal inference for complex dynamical systems?
- 2. How to detect causal links?

Goal

- 1. How to formulate causal inference for complex dynamical systems?
- 2. How to detect causal links?
- 3. How to quantify causal interactions?

How to formulate causal inference for complex dynamical systems?

Definition

$$\begin{array}{c} X^{1} \\ X^{2} \\ X^{3} \\ X^{4} \\ X^{4} \\ X^{4} \end{array}$$

Definition

Definition

 $X_{t-\tau}^{i} \not\models X_{t}^{j} \mid \mathbf{X}_{t}^{-}$ $X_{t-\tau}^i$ is *not* independent of X_t^j given \mathbf{X}_t^-

Definition

Assuming stationarity

Definition

 $X_{t-\tau}^{i} \not\models X_{t}^{j} \mid \mathbf{X}_{t}^{-}$ $X_{t-\tau}^i$ is *not* independent of X_t^j given \mathbf{X}_t^-

Assuming stationarity

Definition

Assuming stationarity

Contemporaneous links defined as $X_t^i \not\bowtie X_t^j \mid \mathbf{X}_t^-$ left *undirected* here [Eichler, 2012]

Definition

 $X_{t-\tau}^{i} \not\models X_{t}^{j} \mid \mathbf{X}_{t}^{-}$ $X_{t-\tau}^i$ is *not* independent of X_t^j given \mathbf{X}_t^-

Assuming stationarity

Contemporaneous links defined as $X_t^i \not \perp X_t^j \mid \mathbf{X}_t^-$ left *undirected* here [Eichler, 2012]

How to detect causal links?

Causal discovery

Causal discovery overview

Causal discovery overview

Granger causality

Lag-specific Granger causality:

$$X_{t-\tau}^{i} \not\Vdash X_{t}^{j} \mid \mathbf{X}_{t}^{-}$$

here implemented with ParCorr based on OLS / Ridge / Lasso,

non-parametric Gaussian processes test \rightarrow paper

Granger causality

Lag-specific Granger causality:

$$X_{t-\tau}^{i} \not\Vdash X_{t}^{j} \mid \mathbf{X}_{t}^{-}$$

here implemented with ParCorr based on OLS / Ridge / Lasso,

non-parametric Gaussian processes test \rightarrow paper

Granger causality

Lag-specific Granger causality:

$$X_{t-\tau}^{i} \not\Vdash X_{t}^{j} \mid \mathbf{X}_{t}^{-}$$

here implemented with ParCorr based on OLS / Ridge / Lasso,

non-parametric Gaussian processes test \rightarrow paper

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket)

1. Condition selection (Markov blanket) For $j \in \{1, ..., N\}$: Estimate superset of parents $\tilde{\mathcal{P}}(X_t^j)$ such that $X_t^j \perp \mathbf{X}_t^- \setminus \tilde{\mathcal{P}}(X_t^j) \mid \tilde{\mathcal{P}}(X_t^j)$ with iterative PC₁ algorithm: tuned to high power with liberal α , false pos. control in next step!

2. Momentary conditional independence (MCI) test

For $i, j \in \{1, \dots, N\}$ and $0 \le \tau \le \tau_{max}$: Test

MCI: $X_{t-\tau}^{i} \perp X_{t}^{j} \mid \tilde{\mathcal{P}}(X_{t}^{j}), \, \tilde{\mathcal{P}}(X_{t-\tau}^{i})$

1. Condition selection (Markov blanket) For $j \in \{1, ..., N\}$: Estimate superset of parents $\tilde{\mathcal{P}}(X_t^j)$ such that $X_t^j \perp \mathbf{X}_t^- \setminus \tilde{\mathcal{P}}(X_t^j) \mid \tilde{\mathcal{P}}(X_t^j)$ with iterative PC₁ algorithm: tuned to high power with liberal α , false pos. control in next step!

2. Momentary conditional independence (MCI) test

For $i, j \in \{1, \dots, N\}$ and $0 \le \tau \le \tau_{max}$: Test

MCI: $X_{t-\tau}^{i} \perp X_{t}^{j} \mid \tilde{\mathcal{P}}(X_{t}^{j}), \, \tilde{\mathcal{P}}(X_{t-\tau}^{i})$

1. Condition selection (Markov blanket) For $j \in \{1, ..., N\}$: Estimate superset of parents $\tilde{\mathcal{P}}(X_t^j)$ such that

 $X_t^j \perp \mathbf{X}_t \setminus \tilde{\mathcal{P}}(X_t^j) \mid \tilde{\mathcal{P}}(X_t^j)$ with iterative PC_1 algorithm: tuned to high power with liberal α , false pos. control in next step!

2. Momentary conditional independence (MCI) test

For $i, j \in \{1, \dots, N\}$ and $0 \le \tau \le \tau_{max}$: Test

Flexible regarding conditional independence tests here ParCorr (OLS), Gaussian processes \rightarrow paper

0

Condition-selection significance level $\, lpha \,$

Condition-selection significance level α

Correlation / mutual information

 Granger causality / Transfer entropy

More theory in paper:

If PC_1 identifies parents, then

- MCI has unbiased detection power for linear links in additive models $I_{X \to Y}^{\text{MCI}} = I\left(\eta_{t-\tau}^{X}; c\eta_{t-\tau}^{X} + \eta_{t}^{Y}\right)$
- MCI is well-calibrated also for autocorrelated data
- effect size of MCI is larger than $\mathsf{GC} \to \mathsf{more}$ power also for low dimensions

Conditional independence tests

Assuming linear model: Partial correlation (ParCorr)

1. Regress out influence of Z with OLS

$$X = Z\beta_X + \epsilon_X$$
$$Y = Z\beta_Y + \epsilon_Y$$

Ridge and Lasso implemented with scikit-learn on standardized time series

- Ridge regularization: LOO-cross-validated regularization parameter $\alpha \in \{0.1, 1, 2, \dots, 500\}$
- Lasso regularization: multi-task lasso, $\alpha \in \{0.0001, 0.001, 0.01, 0.1, 1\}$ using 5-fold cross-validation, max. iterations = 100
- 2. Test independence of residuals with *t*-test
 - OLS: $T D_Z 2$ degrees of freedom

Assuming nonlinear additive Gaussian: GPDC

1. Regress out influence of Z with Gaussian process assuming

$$X = f_X(Z) + \epsilon_X$$
$$Y = f_Y(Z) + \epsilon_Y$$
$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

GP regression implemented using sklearn

- Radial Basis Function (RBF) + White Noise kernel
- bandwidth estimated with MLE
- 2. Test independence of uniformized residuals with *distance correlation coefficient* [Székely et al., 2007]

 $\mathcal{R}(r_X, r_Y)$

using pre-computed null distribution (for every T)

General: Conditional mutual information (CMI)

$$I(X; Y|Z) = \int dz \ p(z) \int \int dx dy \ p(x, y|z) \log \frac{p(x, y|z)}{p(x|z) \cdot p(y|z)}$$

Estimated with kNN-estimator [Kraskov et al., 2004, Frenzel and Pompe, 2007] **Free parameter:** number of nearest neighbors $k \sim$ locally adaptive bandwidth

Causal assumptions

Causal interpretation assumes [Spirtes et al., 2000]:

- Causal Markov Condition: "All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"
- Causal Sufficiency: Measured variables include all of the common causes
- Faithfulness / Stableness: "Independencies in data arise not from incredible coincidence, but rather from causal structure"; violated by purely deterministic dependencies

Causal assumptions

Causal interpretation assumes [Spirtes et al., 2000]:

- Causal Markov Condition: "All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"
- Causal Sufficiency: Measured variables include all of the common causes
- Faithfulness / Stableness: "Independencies in data arise not from incredible coincidence, but rather from causal structure"; violated by purely deterministic dependencies
- No contemporaneous effects: (but can be extended)
- Stationarity: time series case
- Parametric assumptions of independence tests

Causal assumptions

Causal interpretation assumes [Spirtes et al., 2000]:

- Causal Markov Condition: "All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"
- Causal Sufficiency: Measured variables include all of the common causes
- Faithfulness / Stableness: "Independencies in data arise not from incredible coincidence, but rather from causal structure"; violated by purely deterministic dependencies
- No contemporaneous effects: (but can be extended)
- Stationarity: time series case
- Parametric assumptions of independence tests

More discussion \rightarrow appendix

- random coupling topologies, time lags, linear
- fixed link strength within each network
- different autocorrelations for variables

•
$$au_{\max} = 5$$
, $T = 150$, varying $N = 5..60
ightarrow N \cdot au_{\max} > T$

- random coupling topologies, time lags, linear
- fixed link strength within each network
- different autocorrelations for variables

•
$$au_{\max} = 5$$
, $T = 150$, varying $N = 5..60
ightarrow N \cdot au_{\max} > T$

- random coupling topologies, time lags, linear
- fixed link strength within each network
- different autocorrelations for variables

•
$$au_{\max} = 5$$
, $T = 150$, varying $N = 5..60
ightarrow N \cdot au_{\max} > T$

- random coupling topologies, time lags, linear
- fixed link strength within each network
- different autocorrelations for variables
- $au_{\max} = 5$, T = 150, varying $N = 5..60
 ightarrow N \cdot au_{\max} > T$

Similarly well-calibrated tests

GC

Number of variables N

Similarly well-calibrated tests

GC

PCMCI

Number of variables N

GC suffers from curse of dimensionality and power bias

Number of variables N

GC suffers from curse of dimensionality and power bias

Lasso not well-calibrated and power bias

PC algorithm also low and biased power

Numerical experiments

Key idea again

Numerical experiments

Key idea again

Applications

Applications

- Causal hypothesis testing [Runge et al., 2014, Runge et al., 2015c, Kretschmer et al., 2016]
- Variable selection for model building
- ...or prediction schemes [Runge et al., 2015a, Kretschmer et al., 2017]
- Pathway analysis [Runge et al., 2015b, Runge, 2015]

- detrended, anomalized, winter-only (DJF) of 1981-2012
- dimension reduction using Varimax-rotated PCA [Vejmelka et al., 2014]
- time resolution: 3-days, $\tau_{max} = 3$ weeks

- detrended, anomalized, winter-only (DJF) of 1981-2012
- dimension reduction using Varimax-rotated PCA [Vejmelka et al., 2014]
- time resolution: 3-days, $\tau_{\rm max}=$ 3 weeks

- detrended, anomalized, winter-only (DJF) of 1981-2012
- dimension reduction using Varimax-rotated PCA [Vejmelka et al., 2014]
- time resolution: 3-days, $\tau_{max} = 3$ weeks

- detrended, anomalized, winter-only (DJF) of 1981-2012
- dimension reduction using Varimax-rotated PCA [Vejmelka et al., 2014]
- time resolution: 3-days, $\tau_{\rm max}=$ 3 weeks

- detrended, anomalized, winter-only (DJF) of 1981-2012
- dimension reduction using Varimax-rotated PCA [Vejmelka et al., 2014]
- time resolution: 3-days, $\tau_{max} = 3$ weeks

- detrended, anomalized, winter-only (DJF) of 1981–2012
- dimension reduction using Varimax-rotated PCA [Vejmelka et al., 2014]
- time resolution: 3-days, $\tau_{\rm max}=$ 3 weeks
- $N\tau_{max} = 60 \cdot 7 = 420$ with a comparably small sample size of about 950 samples and partially strong autocorrelations

Climate applications

Spurious correlation vs MCI

• even strong correlations are spurious

Climate applications

Granger causality vs MCI

• many even strong causal links overlooked with GC

How to quantify causal interactions?

Causal strength

Defining causal strength

$$\begin{split} X_{t-\tau} &= g_X \left(\mathcal{P} \left(X_{t-\tau} \right) \right) + \eta_{t-\tau}^X \\ Y_t &= g_Y \left(\mathcal{P} \left(Y_t \right) \setminus \{ X_{t-\tau} \} \right) + \tilde{\eta}_t^Y \\ \text{with link } X_{t-\tau} &\to Y_t \text{ represented as} \\ \tilde{\eta}_t^Y &= f(X_{t-\tau}) + \eta_t^Y \end{split}$$

Causal strength

 $I\left(\eta_{t-\tau}^{X};\tilde{\eta}_{t}^{Y}|\mathcal{P}\left(X_{t-\tau}\right)\right)$

measures "momentary" dependence in $\tilde{\eta}_t^Y$ on $X_{t-\tau}$ that does not come through the parents of $X_{t-\tau}$

Defining causal strength

$$\begin{split} X_{t-\tau} &= g_X \left(\mathcal{P} \left(X_{t-\tau} \right) \right) + \eta_{t-\tau}^X \\ Y_t &= g_Y \left(\mathcal{P} \left(Y_t \right) \setminus \{ X_{t-\tau} \} \right) + \tilde{\eta}_t^Y \\ \text{with link } X_{t-\tau} &\to Y_t \text{ represented as} \\ \tilde{\eta}_t^Y &= f(X_{t-\tau}) + \eta_t^Y \end{split}$$

Causal strength

 $I\left(\eta_{t-\tau}^{X};\tilde{\eta}_{t}^{Y}|\mathcal{P}\left(X_{t-\tau}\right)\right)$

measures "momentary" dependence in $\tilde{\eta}_t^Y$ on $X_{t-\tau}$ that does not come through the parents of $X_{t-\tau}$

Definition

$$\mathsf{MCI:} \ X_{t-\tau} \perp Y_t \mid \mathcal{P}(Y_t) \setminus \{X_{t-\tau}\}, \, \mathcal{P}(X_{t-\tau}) \tag{1}$$

Definition

$$I_{X \to Y}^{\text{MCI}}(\tau) = I\left(X_{t-\tau} ; Y_t \mid \mathcal{P}(Y_t) \setminus \{X_{t-\tau}\}, \mathcal{P}(X_{t-\tau})\right)$$
(1)

Definition

$$I_{X \to Y}^{\text{MCI}}(\tau) = I\left(X_{t-\tau} ; Y_t \mid \mathcal{P}(Y_t) \setminus \{X_{t-\tau}\}, \mathcal{P}(X_{t-\tau})\right)$$
(1)

1. MCI measures causal strength

$$\begin{split} I_{X \to Y}^{\text{MCI}} &= I\left(g_X\left(\mathcal{P}_{X_{t-\tau}}\right) + \eta_{t-\tau}^X; g_Y\left(\mathcal{P}_{Y_t} \setminus \{X_{t-\tau}\}\right) + \tilde{\eta}_t^Y \mid \ldots\right) \\ &= I\left(\eta_{t-\tau}^X; \tilde{\eta}_t^Y \mid \mathcal{P}_{X_{t-\tau}}\right) \quad \Box \end{split}$$

Definition

$$I_{X \to Y}^{\text{MCI}}(\tau) = I\left(X_{t-\tau} ; Y_t \mid \mathcal{P}(Y_t) \setminus \{X_{t-\tau}\}, \mathcal{P}(X_{t-\tau})\right)$$
(1)

1. MCI measures causal strength

$$\begin{split} I_{X \to Y}^{\text{MCI}} &= I\left(g_X\left(\mathcal{P}_{X_{t-\tau}}\right) + \eta_{t-\tau}^X; g_Y\left(\mathcal{P}_{Y_t} \setminus \{X_{t-\tau}\}\right) + \tilde{\eta}_t^Y \mid \ldots\right) \\ &= I\left(\eta_{t-\tau}^X; \tilde{\eta}_t^Y \mid \mathcal{P}_{X_{t-\tau}}\right) \quad \Box \end{split}$$

2. MCI has unbiased detection power for linear links

$$\begin{split} \tilde{\eta}_{t}^{Y} &= cX_{t-\tau} + \eta_{t}^{Y} = c\left(g_{X}\left(\mathcal{P}_{X_{t-\tau}}\right) + \eta_{t-\tau}^{X}\right) + \eta_{t}^{Y} \\ \implies I_{X \to Y}^{\mathrm{MCI}} &= I\left(\eta_{t-\tau}^{X}; c\eta_{t-\tau}^{X} + \eta_{t}^{Y}\right) \end{split}$$

Definition

$$I_{X \to Y}^{\text{MCI}}(\tau) = I\left(X_{t-\tau} ; Y_t \mid \mathcal{P}(Y_t) \setminus \{X_{t-\tau}\}, \mathcal{P}(X_{t-\tau})\right)$$
(1)

1. MCI measures causal strength

$$\begin{split} I_{X \to Y}^{\text{MCI}} &= I\left(g_X\left(\mathcal{P}_{X_{t-\tau}}\right) + \eta_{t-\tau}^X; g_Y\left(\mathcal{P}_{Y_t} \setminus \{X_{t-\tau}\}\right) + \tilde{\eta}_t^Y \mid \ldots\right) \\ &= I\left(\eta_{t-\tau}^X; \tilde{\eta}_t^Y \mid \mathcal{P}_{X_{t-\tau}}\right) \quad \Box \end{split}$$

2. MCI has unbiased detection power for linear links

$$\begin{split} \tilde{\eta}_{t}^{Y} &= cX_{t-\tau} + \eta_{t}^{Y} = c\left(g_{X}\left(\mathcal{P}_{X_{t-\tau}}\right) + \eta_{t-\tau}^{X}\right) + \eta_{t}^{Y} \\ \Longrightarrow \ I_{X \to Y}^{\mathrm{MCI}} &= I\left(\eta_{t-\tau}^{X}; c\eta_{t-\tau}^{X} + \eta_{t}^{Y}\right) \end{split}$$

3. MCI leads to well-calibrated test

$$\tilde{\eta}_t^Y = \eta_t^Y \quad \Longrightarrow \quad I_{X \to Y}^{\text{MCI}} = I\left(\eta_{t-\tau}^X; \eta_t^Y\right) = 0$$

1. Generally: GC \leq MCI (\rightarrow GC has lower power)

$$I_{X \to Y}^{\mathrm{GC}}(\tau) = I\left(X_{t-\tau}; Y_t | \mathbf{X}_t^- \setminus \{X_{t-\tau}\}\right)$$

$$I((X, Z); Y|W) = \underbrace{I(X; Y|W)}_{MCI} + \underbrace{I(Z; Y|W, X)}_{=0 \text{ (Markov)}}$$
$$= \underbrace{I(Z; Y|W)}_{\geq 0} + \underbrace{I(X; Y|WZ)}_{GC}$$
$$\implies I_{X \to Y}^{MCI}(\tau) \geq I_{X \to Y}^{GC}(\tau) \quad \Box$$

MCI, GC, and PC

2. Single PC test has more power, but is non-iid

$$I_{X \to Y}^{\text{PC}}(\tau) = I\left(X_{t-\tau}; Y_t | \mathcal{P}\left(Y_t\right) \setminus \{X_{t-\tau}\}\right)$$

= $I\left(\eta_{t-\tau}^X, \mathcal{P}\left(X_{t-\tau}\right); Y_t | \mathcal{P}\left(Y_t\right) \setminus \{X_{t-\tau}\}\right)$
= $\underbrace{I\left(\mathcal{P}\left(X_{t-\tau}\right); Y_t | \mathcal{P}\left(Y_t\right) \setminus \{X_{t-\tau}\}\right)}_{\text{typically non-iid}}$
+ $\underbrace{I\left(\eta_{t-\tau}^X; Y_t | \mathcal{P}\left(Y_t\right) \setminus \{X_{t-\tau}\}, \mathcal{P}\left(X_{t-\tau}\right)\right)}_{\text{MCI}}$
 $\Longrightarrow I_{X \to Y}^{\text{MCI}}(\tau) \leq I_{X \to Y}^{\text{PC}}(\tau)$

Effect size analysis for simple model

General proof for 'unbiased' detection power \rightarrow paper

Linear approach: Mediated Causal Effect (MCE) $Y_t = f(\vec{\mathcal{P}_Y}) + error = \vec{\mathcal{P}_Y} \cdot \vec{B} + error$

• Direct links: path coefficients $\alpha, \beta, \gamma, \delta, \varepsilon$

Linear approach: Mediated Causal Effect (MCE) $Y_t = f(\vec{\mathcal{P}_Y}) + error = \vec{\mathcal{P}_Y} \cdot \vec{B} + error$

- Direct links: path coefficients $\alpha, \beta, \gamma, \delta, \varepsilon$
- Indirect causal effect:

 $\operatorname{CE}_{X \to Y} = \alpha \varepsilon + \beta \delta + \beta \gamma \varepsilon$

Linear approach: Mediated Causal Effect (MCE) $Y_t = f(\vec{\mathcal{P}_Y}) + error = \vec{\mathcal{P}_Y} \cdot \vec{B} + error$

- Direct links: path coefficients $\alpha, \beta, \gamma, \delta, \varepsilon$
- Indirect causal effect:

 $\operatorname{CE}_{X \to Y} = \alpha \varepsilon + \beta \delta + \beta \gamma \varepsilon$

• Mediated causal effect: $\mathrm{MCE}_{X \to Y \mid W_1} = \beta \delta + \beta \gamma \varepsilon$

Climate application: East Pacific \rightarrow Monsoon pathway Here whole year analysis [Runge et al., 2015b]

• causal approach to atmospheric teleconnections

Climate application

Here whole year analysis [Runge et al., 2015b]

- Average Causal Effect (ACE) $ACE(i) = \frac{1}{N-1} \sum_{j \neq i} CE_{i \rightarrow j}^{max}$
- Average Causal Susceptibility $ACS(j) = \frac{1}{N-1} \sum_{i \neq j} CE_{i \rightarrow j}^{max}$

Climate application

Here whole year analysis [Runge et al., 2015b]

 uplifts over tropical oceans are major drivers

Climate application

Here whole year analysis [Runge et al., 2015b]

• Average Mediated Causal Effect (AMCE) $AMCE(i) = \frac{1}{|\mathcal{C}_k|} \sum_{(i,j) \in \mathcal{C}_k} \max_{\tau} |MCE_{i \to j|k}(\tau)|$
Climate application

Here whole year analysis [Runge et al., 2015b]

 uplifts over tropical oceans also major mediators

Information-theoretic approach [Runge, 2015]

 $I(X; Y|Z) = \int dz \, p(z) \iint dx dy \, p(x, y|z) \log \frac{p(x, y|z)}{p(x|z) \cdot p(y|z)}$

• Direct links: Momentary information transfer (MIT)

$$I_{X\to Y}^{\mathrm{MIT}} = I(X; Y | \mathcal{P}_Y, \mathcal{P}_X)$$

Information-theoretic approach [Runge, 2015]

$$\begin{aligned} X_t &= f(\mathcal{P}_X) + \eta_t^X \\ I_{X \to Y}^{\text{MITP}} &= I(\eta_{t-3}^X \; ; \; Y_t \mid \mathcal{P}_{\text{paths}}) \end{aligned}$$

 $I(X; Y|Z) = \int dz \, p(z) \iint dx dy \, p(x, y|z) \log \frac{p(x, y|z)}{p(x|z) \cdot p(y|z)}$

- Direct links: Momentary information transfer (MIT) $I_{X \to Y}^{MIT} = I(X; Y | \mathcal{P}_Y, \mathcal{P}_X)$
- Indirect paths: Momentary information transfer along paths (MITP) $I_{X \to Y}^{\text{MITP}}(\tau) = I(X; Y | \mathcal{P}_{paths})$

Information-theoretic approach [Runge, 2015]

$$\begin{split} X_t &= f(\mathcal{P}_X) + \eta_t^X \\ I_{X \to Y}^{\text{MITP}} &= I(\eta_{t-3}^X \; ; \; Y_t \; | \; \mathcal{P}_{\textit{paths}}) \end{split}$$

$$\mathcal{I}_{X \to Y|W_1}^{\text{MII}} = \mathcal{I}(\eta_{t-3}^X; W_{1,t-2}; Y_t | \mathcal{P}_{\textit{paths}})$$

 $I(X; Y|Z) = \int dz \, p(z) \iint dx dy \, p(x, y|z) \log \frac{p(x, y|z)}{p(x|z) \cdot p(y|z)}$

- Direct links: Momentary information transfer (MIT) $I_{X \to Y}^{\text{MIT}} = I(X; Y | \mathcal{P}_Y, \mathcal{P}_X)$
- Indirect paths: Momentary information transfer along paths (MITP) $I_{X \to Y}^{\text{MITP}}(\tau) = I(X; Y | \mathcal{P}_{paths})$
- Mediation: Momentary interaction information (MII) $\mathcal{I}_{X \to Y|W}^{MII}(\tau) = I_{X \to Y}^{MITP}(\tau)$

$$-\underbrace{I(X;Y \mid \mathcal{P}_{paths}, \mathbf{W})}$$

MITP conditioned on W

Information-theoretic approach [Runge, 2015]

MITP

M

• framework for reliable large-scale time-lagged causal discovery

Python code on https://jakobrunge.github.io/tigramite/

- framework for reliable large-scale time-lagged causal discovery
- flexible regarding (non-parametric) conditional independence tests
 → nodes can be multivariate, variables discrete, ...

Python code on https://jakobrunge.github.io/tigramite/

- framework for reliable large-scale time-lagged causal discovery
- flexible regarding (non-parametric) conditional independence tests
 → nodes can be multivariate, variables discrete, ...
- interpretable MCI statistic measures causal strength
 - \rightarrow ranking causal links in large-scale analyses

Python code on https://jakobrunge.github.io/tigramite/

- framework for reliable large-scale time-lagged causal discovery
- flexible regarding (non-parametric) conditional independence tests
 → nodes can be multivariate, variables discrete, ...
- interpretable MCI statistic measures causal strength \rightarrow ranking causal links in large-scale analyses
- Causal pathway analysis [PRE Dec 2015]

Python code on https://jakobrunge.github.io/tigramite/

- framework for reliable large-scale time-lagged causal discovery
- flexible regarding (non-parametric) conditional independence tests
 → nodes can be multivariate, variables discrete, ...
- interpretable MCI statistic measures causal strength \rightarrow ranking causal links in large-scale analyses
- Causal pathway analysis [PRE Dec 2015]
- Causal complex network measures [Nature Comm. 2015]

Python code on https://jakobrunge.github.io/tigramite/

- framework for reliable large-scale time-lagged causal discovery
- flexible regarding (non-parametric) conditional independence tests
 → nodes can be multivariate, variables discrete, ...
- interpretable MCI statistic measures causal strength \rightarrow ranking causal links in large-scale analyses
- Causal pathway analysis [PRE Dec 2015]
- Causal complex network measures [Nature Comm. 2015]
- Optimal prediction [PRE May 2015]

Python code on https://jakobrunge.github.io/tigramite/

Tigramite

https://jakobrunge.github.io/tigramite/

New research group

Thank you !!!

References i

Eichler, M. (2012).

Graphical modelling of multivariate time series.

Probability Theory and Related Fields, 153(1):233–268.

Frenzel, S. and Pompe, B. (2007).

Partial mutual information for coupling analysis of multivariate time series.

Physical Review Letters, 99(20):204101.

References ii

- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. (1996).
 - The NCEP/NCAR 40-year reanalysis project.

Bulletin of the American Meteorological Society, 77(3):437–471.

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information.

Physical Review E, 69(6):066138.

References iii

Kretschmer, M., Coumou, D., Donges, J. F., and Runge, J. (2016).

Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation.

Journal of Climate, 29(11):4069–4081.

Kretschmer, M., Coumou, D., and Runge, J. (2017). Early prediction of weak stratospheric polar vortex states using causal precursors.

under review.

Runge, J. (2015).

Quantifying information transfer and mediation along causal pathways in complex systems.

Phys. Rev. E, 92(6):062829.

References iv

 Runge, J., Donner, R. V., and Kurths, J. (2015a).
 Optimal model-free prediction from multivariate time series. *Phys. Rev. E*, 91(5):052909.

Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., Marwan, N., Paluš, M., and Kurths, J. (2015b).

Identifying causal gateways and mediators in complex spatio-temporal systems.

Nature Communications, 6:8502.

Runge, J., Petoukhov, V., and Kurths, J. (2014). Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models.

Journal of Climate, 27(2):720-739.

References v

Runge, J., Riedl, M., Müller, A., Stepan, H., Wessel, N., and Kurths, J. (2015c).

Quantifying the causal strength of multivariate cardiovascular couplings with momentary information transfer. *Physiological Measurement*, 36(4):813–825.

- Spirtes, P., Glymour, C., and Scheines, R. (2000).
 Causation, Prediction, and Search, volume 81.
 The MIT Press, Boston.
- Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). MEASURING AND TESTING DEPENDENCE BY CORRELATION OF DISTANCES.

The Annals of Statistics, 35(6):2769–2794.

References vi

Vejmelka, M., Pokorná, L., Hlinka, J., Hartman, D., Jajcay, N., and Paluš, M. (2014).

Non-random correlation structures and dimensionality reduction in multivariate climate data.

Climate Dynamics, 44(9-10):2663-2682.

Causal discovery challenges

Latent variables

Synergistic dependencies

Long-range memory

Causal interpretation assumes [Spirtes et al., 2000]:

- Causal Markov Condition: "All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"
- Causal Sufficiency: Measured variables include all of the common causes
- Faithfulness / Stableness: "Independencies in data arise not from incredible coincidence, but rather from causal structure"; violated by purely deterministic dependencies

Causal interpretation assumes [Spirtes et al., 2000]:

- Causal Markov Condition: "All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"
- Causal Sufficiency: Measured variables include all of the common causes
- Faithfulness / Stableness: "Independencies in data arise not from incredible coincidence, but rather from causal structure"; violated by purely deterministic dependencies
- No contemporaneous effects: (but can be extended)
- Stationarity: time series case
- Parametric assumptions of independence tests

Causal interpretation assumes [Spirtes et al., 2000]:

- Causal Markov Condition: "All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"
- Causal Sufficiency: Measured variables include all of the common causes
- Faithfulness / Stableness: "Independencies in data arise not from incredible coincidence, but rather from causal structure"; violated by purely deterministic dependencies
- No contemporaneous effects: (but can be extended)
- Stationarity: time series case
- Parametric assumptions of independence tests

More discussion \rightarrow appendix

"All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"

Formally: Upon specifying a complete graph that contains all common causes: separation in graph entails *at least* implied conditional independencies in process

"All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"

Formally: Upon specifying a complete graph that contains all common causes: separation in graph entails *at least* implied conditional independencies in process

"All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"

Formally: Upon specifying a complete graph that contains all common causes: separation in graph entails *at least* implied conditional independencies in process

"All the relevant probabilistic information that can be obtained from the system is contained in its direct causes"

Formally: Upon specifying a complete graph that contains all common causes: separation in graph entails *at least* implied conditional independencies in process

Structural equation modeling framework:

$$X_t^j = f(\mathbf{X}_t^-, \eta_t^j) \qquad \eta_t^j \perp\!\!\!\perp \mathbf{X}_{t+1}^- \setminus X_t^j$$

Causal Sufficiency

R. Scheines: "Theory of causal inference is about the inferential effect of a variety of assumptions far more than it is an endorsement of particular assumptions"

Given estimates $X \perp Z \mid Y$ and no other independencies. Assuming only Markov condition and faithfulness allows for several different graphs:

Causal Sufficiency

R. Scheines: "Theory of causal inference is about the inferential effect of a variety of assumptions far more than it is an endorsement of particular assumptions"

Given estimates $X \perp Z \mid Y$ and no other independencies. Assuming only Markov condition and faithfulness allows for several different graphs:

Faithfulness

If there are any independence relations in the population that are not a consequence of the Causal Markov condition (or d-separation), then the population is unfaithful.

For example, given three variables and assuming the Causal Markov and Sufficiency Conditions, suppose we measure these (in-)dependencies:

Faithfulness

If there are any independence relations in the population that are not a consequence of the Causal Markov condition (or d-separation), then the population is unfaithful.

For example, given three variables and assuming the Causal Markov and Sufficiency Conditions, suppose we measure these (in-)dependencies:

Faithfulness

If there are any independence relations in the population that are not a consequence of the Causal Markov condition (or d-separation), then the population is unfaithful.

For example, given three variables and assuming the Causal Markov and Sufficiency Conditions, suppose we measure these (in-)dependencies:

 $X \perp\!\!\!\perp Z \quad X \not\!\!\perp Z \mid Y$ $X \not\perp Y \quad (X \not\perp Y \mid Z)$ YXZ YXZ X

Stationarity of causal structure

structurally stationary for all samples

Stationarity of causal structure

structurally stationary within sliding windows

periodically structurally stationary

periodically structurally stationary

• structurally, not necessarily same strengh / parameters

periodically structurally stationary

- structurally, not necessarily same strengh / parameters
- masking implemented in Tigramite